DOI QR코드

DOI QR Code

KAZDAN-WARNER EQUATION ON INFINITE GRAPHS

  • Ge, Huabin (Department of Mathematics Beijing Jiaotong University) ;
  • Jiang, Wenfeng (School of Mathematics (Zhuhai) Sun Yat-Sen University)
  • Received : 2017.08.26
  • Accepted : 2018.06.07
  • Published : 2018.09.01

Abstract

We concern in this paper the graph Kazdan-Warner equation $${\Delta}f=g-he^f$$ on an infinite graph, the prototype of which comes from the smooth Kazdan-Warner equation on an open manifold. Different from the variational methods often used in the finite graph case, we use a heat flow method to study the graph Kazdan-Warner equation. We prove the existence of a solution to the graph Kazdan-Warner equation under the assumption that $h{\leq}0$ and some other integrability conditions or constrictions about the underlying infinite graphs.

Keywords

References

  1. E. Arias-Castro, B. Pelletier, and P. Pudlo, The normalized graph cut and Cheeger constant: from discrete to continuous, Adv. in Appl. Probab. 44 (2012), no. 4, 907-937. https://doi.org/10.1239/aap/1354716583
  2. A. S. Bandeira, A. Singer, and D. A. Spielman, A Cheeger inequality for the graph connection Laplacian, SIAM J. Matrix Anal. Appl. 34 (2013), no. 4, 1611-1630. https://doi.org/10.1137/120875338
  3. F. Bauer, F. Chung, Y. Lin, and Y. Liu, Curvature aspects of graphs, Proc. Amer. Math. Soc. 145 (2017), no. 5, 2033-2042. https://doi.org/10.1090/proc/13145
  4. F. Bauer, B. Hua, and J. Jost, The dual Cheeger constant and spectra of infinite graphs, Adv. Math. 251 (2014), 147-194. https://doi.org/10.1016/j.aim.2013.10.021
  5. F. Bauer, M. Keller, and R. K. Wojciechowski, Cheeger inequalities for unbounded graph Laplacians, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 2, 259-271. https://doi.org/10.4171/JEMS/503
  6. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, in Problems in analysis (Papers dedicated to Salomon Bochner, 1969), 195-199, Princeton Univ. Press, Princeton, NJ, 1970.
  7. W. Chen and C. Li, Gaussian curvature in the negative case, Proc. Amer. Math. Soc. 131 (2003), no. 3, 741-744. https://doi.org/10.1090/S0002-9939-02-06802-8
  8. F. Chung, A. Grigor'yan, and S.-T. Yau, Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs, Comm. Anal. Geom. 8 (2000), no. 5, 969-1026. https://doi.org/10.4310/CAG.2000.v8.n5.a2
  9. J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc. 284 (1984), no. 2, 787-794. https://doi.org/10.1090/S0002-9947-1984-0743744-X
  10. H. Ge, Kazdan-Warner equation on graph in the negative case, J. Math. Anal. Appl. 453 (2017), no. 2, 1022-1027. https://doi.org/10.1016/j.jmaa.2017.04.052
  11. H. Ge, The p-th Kazdan-Warner equation on graphs, to appear in Commun. Contemp. Math. 2018.
  12. A. Grigor'yan, Y. Lin, and Y. Yang, Kazdan-Warner equation on graph, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 92, 13 pp. https://doi.org/10.1007/s00526-015-0946-7
  13. J. L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, Ann. of Math. (2) 99 (1974), 14-47. https://doi.org/10.2307/1971012
  14. J. L. Kazdan and F. W. Warner, Curvature functions for open 2-manifolds, Ann. of Math. (2) 99 (1974), 203-219. https://doi.org/10.2307/1970898
  15. M. Keller and D. Mugnolo, General Cheeger inequalities for p-Laplacians on graphs, Nonlinear Anal. 147 (2016), 80-95. https://doi.org/10.1016/j.na.2016.07.011
  16. W. M. Ni, On the elliptic equation ${\Delta}u$ + $K(x)e^{2u}$ = 0 and conformal metrics with prescribed Gaussian curvatures, Invent. Math. 66 (1982), no. 2, 343-352. https://doi.org/10.1007/BF01389399
  17. O. Parzanchevski, R. Rosenthal, and R. J. Tessler, Isoperimetric inequalities in simplicial complexes, Combinatorica 36 (2016), no. 2, 195-227. https://doi.org/10.1007/s00493-014-3002-x
  18. D. H. Sattinger, Conformal metrics in $R^2$ with prescribed curvature, Indiana Univ. Math. J. 22 (1972/73), 1-4.
  19. Y. Wang and X. Zhang, A class of Kazdan-Warner typed equations on non-compact Riemannian manifolds, Sci. China Ser. A 51 (2008), no. 6, 1111-1118. https://doi.org/10.1007/s11425-008-0019-x