DOI QR코드

DOI QR Code

Triptolide Mimics the Effect of Dietary Restriction on Lifespan and Retards Age-related Diseases in Caenorhabditis elegans

트립톨라이드가 식이제한에 의한 수명연장과 노화관련 질환에 미치는 영향

  • Beak, Sun-Mi (Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University) ;
  • Park, Sang-Kyu (Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University)
  • 백선미 (순천향대학교 의료과학대학 의료생명공학과) ;
  • 박상규 (순천향대학교 의료과학대학 의료생명공학과)
  • Received : 2018.03.19
  • Accepted : 2018.08.08
  • Published : 2018.08.30

Abstract

Triptolide is a compound found in Tripterygium wilfordii and reported to have an anti-inflammatory and anti-oxidant activities. A previous study shows that the dietary supplementation with triptolide increases resistance to environmental stressors, including oxidative stress, heat shock, and ultraviolet irradiation, and extends lifespan in C. elegans. Here, we investigated the underlying mechanisms involved in the lifespan-extending effect of triptolide. The effect of triptolide on age-related diseases, such as diabetes mellitus and Alzheimer's disease, was also examined using animal disease models. The longevity phenotype conferred by triptolide was not observed in the eat-2 mutant, a well-known genetic model of dietary restriction, while there was an additional lifespan extension with triptolide in age-1 and clk-1 mutants. The long lifespan of age-1 mutant is resulted from a reduced insulin/IGF-1-like signaling and the clk-1 mutant lives longer than wild-type due to dysfunction of mitochondrial electron transport chain reaction. The effect of dietary restriction using bacterial dilution on lifespan also overlapped with that of triptolide. The toxicity of high glucose diet or transgenic human amyloid beta gene was significantly suppressed by the supplementation with triptolide. These findings suggest that triptolide can mimic the effect of dietary restriction on lifespan and onset of age-related diseases. We conclude that triptolide can be a strong candidate for the development of dietary restriction mimetics.

뇌공등에 함유되어있는 트립톨라이드는 뛰어난 항염증, 항산화 효능을 가지고 있음이 보고되었다. 예쁜꼬마선충을 이용한 이전 연구에서 트립톨라이드의 섭취가 개체의 항스트레스 효능을 높이고, 수명을 연장시킴이 밝혀졌다. 본 연구에서는 트립톨라이드에 의한 수명연장에 관여하는 세포 내 기전과 트립톨라이드가 노화관련 질환인 당뇨병과 알츠하이머병에 미치는 영향을 평가하였다. 트립톨라이드는 인슐린/IGF-1-like 신호전달 저하에 의한 수명연장 돌연변이인 age-1과 미토콘드리아 전자 전달계 저하에 의한 수명연장 돌연변이인 clk-1의 수명을 유의적으로 증가시킨 반면, 식이제한 유도 돌연변이인 eat-2의 수명에는 유의적인 변화를 유도하지 못했다. 또한 박테리아 희석을 이용한 식이제한에 의해 연장된 수명을 추가적으로 더 연장시키지 못했다. 트립톨라이드 섭취는 고농도의 당 섭취에 의한 체내 독성과 사람 아밀로이드 베타 형질전환 유전자로 인한 체내 독성을 유의적으로 저하시켰다. 이러한 결과들은 트립톨라이드에 의한 수명연장이 식이제한에 의한 수명연장 기전과 중복되며, 트립톨라이드가 노화관련 질환을 저해하는 효능이 있음을 보여준다. 따라서, 트립톨라이드는 식이제한 효능을 대체할 수 있는 식의약품 개발에 활용될 수 있다.

Keywords

References

  1. Barger, J. L., Walford, R. L. and Weindruch, R. 2003. The retardation of aging by caloric restriction: its significance in the transgenic era. Exp. Gerontol. 38, 1343-1351. https://doi.org/10.1016/j.exger.2003.10.017
  2. Clancy, D. J., Gems, D., Hafen, E., Leevers, S. J. and Partridge, L. 2002. Dietary restriction in long-lived dwarf flies. Science 296, 319. https://doi.org/10.1126/science.1069366
  3. Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., Allison, D. B., Cruzen, C., Simmons, H. A., Kemnitz, J. W. and Weindruch, R. 2009. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201-204.
  4. Fossel, M. 1998. Telomerase and the aging cell: implications for human health. JAMA. 279, 1732-1735. https://doi.org/10.1001/jama.279.21.1732
  5. Halagappa, V. K., Guo, Z., Pearson, M., Matsuoka, Y., Cutler, R. G., Laferla, F. M. and Mattson, M. P. 2007. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Neurobiol. Dis. 26, 212-220. https://doi.org/10.1016/j.nbd.2006.12.019
  6. Harman, D. 1956. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298-300. https://doi.org/10.1093/geronj/11.3.298
  7. Houthoofd, K., Johnson, T. E. and Vanfleteren, J. R. 2005. Dietary restriction in the nematode Caenorhabditis elegans. J. Gerontol. A Biol. Sci. Med. Sci. 60, 1125-1131. https://doi.org/10.1093/gerona/60.9.1125
  8. Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., Zipkin, R. E., Chung, P., Kisielewski, A., Zhang, L. L., Scherer, B. and Sinclair, D. A. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196. https://doi.org/10.1038/nature01960
  9. Hu, G., Gong, X., Wang, L., Liu, M., Liu, Y., Fu, X., Wang, W., Zhang, T. and Wang, X. 2016. Triptolide promotes the clearance of alpha-synuclein by enhancing autophagy in neuronal cells. Mol. Neurobiol. 54, 2361-2372.
  10. Keowkase, R., Aboukhatwa, M. and Luo, Y. 2010. Fluoxetine protects against amyloid-beta toxicity, in part via daf-16 mediated cell signaling pathway, in Caenorhabditis elegans. Neuropharmacology 59, 358-365. https://doi.org/10.1016/j.neuropharm.2010.04.008
  11. Kim, J. S. and Park, S. K. 2017. Supplementation of S-allyl cysteine improves health span in Caenorhabditis elegans. Biosci. J. 33, 411-421.
  12. Kim, S. J., Beak, S. M. and Park, S. K. 2017. Supplementation with triptolide increases resistance to environmental stressors and lifespan in C. elegans. J. Food Sci. 82, 1484-1490. https://doi.org/10.1111/1750-3841.13720
  13. Kupchan, S. M., Court, W. A., Dailey, R. G., Jr., Gilmore, C. J. and Bryan, R. F. 1972. Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium wilfordii. J. Am. Chem. Soc. 94, 7194-7195. https://doi.org/10.1021/ja00775a078
  14. Lee, C. K., Allison, D. B., Brand, J., Weindruch, R. and Prolla, T. A. 2002. Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc. Natl. Acad. Sci. USA. 99, 14988-14993. https://doi.org/10.1073/pnas.232308999
  15. Lee, C. K., Klopp, R. G., Weindruch, R. and Prolla, T. A. 1999. Gene expression profile of aging and its retardation by caloric restriction. Science 285, 1390-1393. https://doi.org/10.1126/science.285.5432.1390
  16. Lee, J. S., Park, S. K. and Park, S. K. 2016. Electrolyzed-reduced water mitigates myloid beta toxicity via DAF-16 in C. elegans. Toxicol. Environ. Health Sci. 8, 56-61. https://doi.org/10.1007/s13530-016-0261-5
  17. Mair, W. and Dillin, A. 2008. Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727-754. https://doi.org/10.1146/annurev.biochem.77.061206.171059
  18. McKiernan, S. H., Bua, E., McGorray, J. and Aiken, J. 2004. Early-onset calorie restriction conserves fiber number in aging rat skeletal muscle. FASEB J. 18, 580-581. https://doi.org/10.1096/fj.03-0667fje
  19. Oh, S. I., Park, J. K. and Park, S. K. 2015. Lifespan extension and increased resistance to environmental stressors by N-acetyl-L-cysteine in Caenorhabditis elegans. Clinics (Sao Paulo) 70, 380-386. https://doi.org/10.6061/clinics/2015(05)13
  20. Oh, S. I. and Park, S. K. 2017. N-acetyl-L-cysteine mimics the effect of dietary restriction on lifespan and reduces amyloid beta-induced toxicity in Caenorhabditis elegans. Food Sci. Biotechnol. 26, 783-790. https://doi.org/10.1007/s10068-017-0079-1
  21. Onken, B. and Driscoll, M. 2010. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 5, e8758. https://doi.org/10.1371/journal.pone.0008758
  22. Osborne, T. B., Mendel, L. B. and Ferry, E. L. 1917. The effect of retardation of growth upon the breeding period and duration of life of rats. Science 45, 294-295. https://doi.org/10.1126/science.45.1160.294
  23. Park, S. K., Link, C. D. and Johnson, T. E. 2010. Life-span extension by dietary restriction is mediated by NLP-7 signaling and coelomocyte endocytosis in C. elegans. FASEB J. 24, 383-392. https://doi.org/10.1096/fj.09-142984
  24. Park, S. K. and Park, S. K. 2013. Electrolyzed-reduced water increases resistance to oxidative stress, fertility, and lifespan via insulin/IGF-1-like signal in C. elegans. Biol. Res. 46, 147-152. https://doi.org/10.4067/S0716-97602013000200005
  25. Peto, R. and Peto, J. 1972. Asymptotically efficient rank invariant test procedures. J. R. Statist. Soc. A 135, 185-207. https://doi.org/10.2307/2344317
  26. Rangaraju, S., Solis, G. M., Andersson, S. I., Gomez-Amaro, R. L., Kardakaris, R., Broaddus, C. D., Niculescu, A. B. and Petrascheck, M. 2015. Atypical antidepressants extend lifespan of Caenorhabditis elegans by activation of a non-cell-autonomous stress response. Aging Cell 14, 971-981. https://doi.org/10.1111/acel.12379
  27. Schlernitzauer, A., Oiry, C., Hamad, R., Galas, S., Cortade, F., Chabi, B., Casas, F., Pessemesse, L., Fouret, G., Feillet-Coudray, C., Cros, G., Cabello, G., Magous, R. and Wrutniak-Cabello, C. 2013. Chicoric acid is an antioxidant molecule that stimulates AMP kinase pathway in L6 myotubes and extends lifespan in Caenorhabditis elegans. PLoS One 8, e78788. https://doi.org/10.1371/journal.pone.0078788
  28. Schlotterer, A., Kukudov, G., Bozorgmehr, F., Hutter, H., Du, X., Oikonomou, D., Ibrahim, Y., Pfisterer, F., Rabbani, N., Thornalley, P., Sayed, A., Fleming, T., Humpert, P., Schwenger, V., Zeier, M., Hamann, A., Stern, D., Brownlee, M., Bierhaus, A., Nawroth, P. and Morcos, M. 2009. C. elegans as model for the study of high glucose- mediated life span reduction. Diabetes 58, 2450-2456. https://doi.org/10.2337/db09-0567
  29. Shigenaga, M. K., Hagen, T. M. and Ames, B. N. 1994. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA. 91, 10771-10778. https://doi.org/10.1073/pnas.91.23.10771
  30. Shintani, T., Sakoguchi, H., Yoshihara, A., Izumori, K. and Sato, M. 2017. d-Allulose, a stereoisomer of d-fructose, extends Caenorhabditis elegans lifespan through a dietary restriction mechanism: A new candidate dietary restriction mimetic. Biochem. Biophys. Res. Commun. 493, 1528-1533. https://doi.org/10.1016/j.bbrc.2017.09.147
  31. Shirahata, S., Kabayama, S., Nakano, M., Miura, T., Kusumoto, K., Gotoh, M., Hayashi, H., Otsubo, K., Morisawa, S. and Katakura, Y. 1997. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem. Biophys. Res. Commun. 234, 269-274. https://doi.org/10.1006/bbrc.1997.6622
  32. Soh, J. W., Marowsky, N., Nichols, T. J., Rahman, A. M., Miah, T., Sarao, P., Khasawneh, R., Unnikrishnan, A., Heydari, A. R., Silver, R. B. and Arking, R. 2013. Curcumin is an early-acting stage-specific inducer of extended functional longevity in Drosophila. Exp. Gerontol. 48, 229-239. https://doi.org/10.1016/j.exger.2012.09.007
  33. Wood, J. G., Rogina, B., Lavu, S., Howitz, K., Helfand, S. L., Tatar, M. and Sinclair, D. 2004. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686-689. https://doi.org/10.1038/nature02789
  34. Zhao, F., Huang, W., Zhang, Z., Mao, L., Han, Y., Yan, J. and Lei, M. 2016. Triptolide induces protective autophagy through activation of the CaMKKbeta-AMPK signaling pathway in prostate cancer cells. Oncotarget 7, 5366-5382.
  35. Ziaei, S. and Halaby, R. 2016. Immunosuppressive, anti-inflammatory and anti-cancer properties of triptolide: A mini review. Avicenna J. Phytomed. 6, 149-164.