References
- Alger, J. R. and Prestegard, J. H. 1979. Nuclear magnetic resonance study of acetic acid permeation of large unilamellar vesicle membranes. Biophys. J. 28, 1-13. https://doi.org/10.1016/S0006-3495(79)85154-1
- Arregui, L. C., Munoz-Fontela, C., Serrano, S., Barasoain, I. and Guinea, A. 2002. Direct visualization of the microtubular cytoskeleton of ciliated protozoa with a fluorescent taxoid. J. Eukaryot. Microbiol. 49, 312-318. https://doi.org/10.1111/j.1550-7408.2002.tb00376.x
- Bicek, A. D., Tuzel, E., Demtchouk,A., Uppalapati, M., Hancock, W. O., Kroll, D. M. and Odde, D. J. 2009. Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells. Mol. Biol. Cell 20, 2943-2953. https://doi.org/10.1091/mbc.e08-09-0909
- Finnie, I. A., Dwarakanath, A. D., Taylor, B. A. and Rhodes, J. M. 1995. Colonic mucin synthesis is increased by sodium butyrate. Gut 36, 93-99. https://doi.org/10.1136/gut.36.1.93
- Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M. and Schreiber, S. L. 2003. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. USA. 100, 4389-4394. https://doi.org/10.1073/pnas.0430973100
- Han, Y., Malak, H., Chaudhary, A. G., Chordia, M. D., Kingston, D. G. and Bane, S. 1998. Distances between the paclitaxel, colchicine, and exchangeable GTP binding sites on tubulin. Biochemistry 37, 6636-6644. https://doi.org/10.1021/bi9719760
- He, D., Hagen, S. J., Pothoulakis, C., Chen, M., Medina, N. D., Warny, M. and LaMont, J. T. 2000. Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology 119, 139-150. https://doi.org/10.1053/gast.2000.8526
- Hecht, G., Pothoulakis, C., LaMont, J. T. and Madara, J. L. 1988. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J. Clin. Invest. 82, 1516-1524. https://doi.org/10.1172/JCI113760
- Henriques, B., Florin, I. and Thelestam, M. 1987. Cellular internalisation of Clostridium difficile toxin A. Microb. Pathog. 2, 455-463. https://doi.org/10.1016/0882-4010(87)90052-0
- Ho, J. G., Greco, A., Rupnik, M. and Ng, K. K. 2005. Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A. Proc. Natl. Acad. Sci. USA. 102, 18373-18378. https://doi.org/10.1073/pnas.0506391102
- Hou, J. K., Abraham, B. and El-Serag, H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am. J. Gastroenterol. 106, 563-573.
- Ishiguro, K., Ando, T., Maeda, O., Watanabe, O. and Goto, H. Suppressive action of acetate on interleukin-8 production via tubulin-alpha acetylation. Immunol. Cell Biol. 92, 624-630.
- Just, I., Fritz, G., Aktories, K., Giry, M., Popoff, M. R., Boquet, P., Hegenbarth, S. and von Eichel-Streiber, C. 1994. Clostridium difficile toxin B acts on the GTP-binding protein Rho. J. Biol. Chem. 269, 10706-10712.
- Just, I., Selzer, J., von Eichel-Streiber, C. and Aktories, K. 1995. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile. J. Clin. Invest. 95, 1026-1031. https://doi.org/10.1172/JCI117747
- Just, I., Selzer, J., Wilm, M., von Eichel-Streiber, C., Mann, M. and Aktories, K. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500-503. https://doi.org/10.1038/375500a0
- Just, I., Wilm, M., Selzer, J., Rex, G., von Eichel-Streiber, C., Mann, M. and Aktories, K. 1995. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 270, 13932-13936. https://doi.org/10.1074/jbc.270.23.13932
- Kelly, C. P. and LaMont, J. T. 1998. Clostridium difficile infection. Annu. Rev. Med. 49, 375-390. https://doi.org/10.1146/annurev.med.49.1.375
- Kelly, C. P. and LaMont, J. T. 2008. Clostridium difficile--more difficult than ever. N. Engl. J. Med. 359, 1932-1940. https://doi.org/10.1056/NEJMra0707500
- Kelly, C. P., Pothoulakis, C. and LaMont, J. T. 1994. Clostridium difficile colitis. N. Engl. J. Med. 330, 257-262. https://doi.org/10.1056/NEJM199401273300406
- Kim, C. H., Park, J. and Kim, M. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. Immune. Netw. 14, 277-288.
- Kim, D. H., Hwang, J. S., Lee, I. H., Nam, S. T., Hong, J., Zhang, P., Lu, L. F., Lee, J., Seok, H., Pothoulakis, C., Lamont, J. T. and Kim, H. The insect peptide CopA3 increases colonic epithelial cell proliferation and mucosal barrier function to prevent inflammatory responses in the gut. J. Biol. Chem. 291, 3209-3223.
- Kim, H., Kokkotou, E., Na, X., Rhee, S. H., Moyer, M. P., Pothoulakis, C. and Lamont, J. T. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129, 1875-1888. https://doi.org/10.1053/j.gastro.2005.09.011
- Kim, H., Rhee, S. H., Kokkotou, E., Na, X., Savidge, T., Moyer, M. P., Pothoulakis, C. and LaMont, J. T. 2005. Clostridium difficile toxin A regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280, 21237-21245. https://doi.org/10.1074/jbc.M413842200
- Kim, H., Rhee, S. H., Pothoulakis, C. and Lamont, J. T. 2007. Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133, 875-886. https://doi.org/10.1053/j.gastro.2007.06.063
- Lu, L. F., Kim, D. H., Lee, I. H., Hong, J., Zhang, P., Yoon, I. N., Hwang, J. S. and Kim, H. Potassium acetate blocks Clostridium difficile toxin A-induced microtubule disassembly by directly inhibiting histone deacetylase 6, thereby ameliorating inflammatory responses in the gut. J. Microbiol. Biotechnol. 26, 693-699.
- Maduzia, D., Matuszyk, A., Ceranowicz, D., Warzecha, Z., Ceranowicz, P., Fyderek, K., Galazka, K. and Dembinski, A. The influence of pretreatment with ghrelin on the development of acetic-acid-induced colitis in rats. J. Physiol. Pharmacol. 66, 875-885.
- Na, X., Zhao, D., Koon, H. W., Kim, H., Husmark, J., Moyer, M. P., Pothoulakis, C. and LaMont, J. T. 2005. Clostridium difficile toxin B activates the EGF receptor and the ERK/MAP kinase pathway in human colonocytes. Gastroenterology 128, 1002-1011. https://doi.org/10.1053/j.gastro.2005.01.053
- Nam, H. J., Kang, J. K., Kim, S. K., Ahn, K. J., Seok, H., Park, S. J., Chang, J. S., Pothoulakis, C., Lamont, J. T. and Kim, H. Clostridium difficile toxin A decreases acetylation of tubulin, leading to microtubule depolymerization through activation of histone deacetylase 6, and this mediates acute inflammation. J. Biol. Chem. 285, 32888-32896.
- Ogawa, N., Satsu, H., Watanabe, H., Fukaya, M., Tsukamoto, Y., Miyamoto, Y. and Shimizu, M. 2000. Acetic acid suppresses the increase in disaccharidase activity that occurs during culture of caco-2 cells. J. Nutr. 130, 507-513. https://doi.org/10.1093/jn/130.3.507
- Ouyang, B. and Howard, B. J. 2009. The monohydrate and dihydrate of acetic acid: a high-resolution microwave spectroscopic study. Phys. Chem. Chem. Phys. 11, 366-373. https://doi.org/10.1039/B814562H
- Pothoulakis, C. and Lamont, J. T. 2001. Microbes and microbial toxins: paradigms for microbial-mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G178-183. https://doi.org/10.1152/ajpgi.2001.280.2.G178
- Southwood, C. M., Peppi, M., Dryden, S., Tainsky, M. A. and Gow, A. 2007. Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem. Res. 32, 187-195. https://doi.org/10.1007/s11064-006-9127-6
- Topping, D. L. and Clifton, P. M. 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031-1064. https://doi.org/10.1152/physrev.2001.81.3.1031