DOI QR코드

DOI QR Code

Acetic Acid Recovers Microtubule Disassembly Caused by Clostridium difficile Toxin A in Human Colonocytes through Increased Tubulin Acetylation

C. difficile 톡신이 야기하는 대장상피세포 미세소관 변형에 대한 초산의 억제 효능

  • Yoon, I Na (Division of Life Science and Chemistry, College of Natural Science, Daejin University) ;
  • Kim, Ho (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
  • 윤이나 (대진대학교 과학기술대학 생명화학부 생명과학전공) ;
  • 김호 (대진대학교 과학기술대학 생명화학부 생명과학전공)
  • Received : 2018.04.10
  • Accepted : 2018.08.08
  • Published : 2018.08.30

Abstract

Clostridium difficile (C. difficile) toxin A is known to cause acute gut inflammation in humans and animals by triggering cytoskeletal disorganization in gut epithelial cells. In human colonocytes, toxin A blocks microtubule assembly by directly increasing the enzymatic activity of histone deacetylase-6 (HDAC-6), a tubulin-specific deacetylase, thereby markedly decreasing tubulin acetylation, which is essential for microtubule assembly. Microtubule assembly dysfunction-associated alterations (i.e., toxin A-exposed gut epithelial cells) are believed to trigger barrier dysfunction and gut inflammation downstream. We recently showed that potassium acetate blocked toxin A-induced microtubule disassembly by inhibiting HDAC-6. Herein, we tested whether acetic acid (AA), another small acetyl residue-containing agent, could block toxin A-induced tubulin deacetylation and subsequent microtubule assembly. Our results revealed that AA treatment increased tubulin acetylation and enhanced microtubule assembly in an HT29 human colonocyte cell line. AA also clearly increased tubulin acetylation in murine colonic explants. Interestingly, the AA treatment also alleviated toxin A-induced tubulin deacetylation and microtubule disassembly, and MTT assays revealed that AA reduced toxin A-induced cell toxicity. Collectively, these results suggest that AA can block the ability of toxin A to cause microtubule disassembly-triggered cytoskeletal disorganization by blocking toxin A-mediated deacetylation of tubulin.

급성위막성대장염(Pseudomembranous colitis)은 C. difficile 세균이 분비하는 톡신A에 의해 유발되는 것으로 알려져 있다. 톡신A에 의한 점막 상피세포의 장벽기능 감소가 발병 원인으로 알려져 있다. 최근 연구에 의하면 톡신 A는 대장상피세포 속 HDAC-6의 활성을 높여 튜블린의 탈아세틸화를 증가시키는 것으로 알려져 있다. 튜블린 단백질의 탈아세틸화는 미세소관 불 형성을 초래하여 점막 상피세포의 극단적인 세포 형태 변형을 야기하게 되며 결국 상피세포의 고유기능인 장벽 기능이 파괴된다고 알려져 있다. 최근 연구자 등은 potassium acetate가 톡신A에 의한 튜블린 탈아세틸화와 미세소관 불 형성을 회복시켜 장염을 유의하게 억제함을 보고하였다. 따라서 본 연구에서는 아세틸기를 포함하는 또 다른 간단한 화학구조의 초산을 적용하여 톡신A의 세포독성을 억제하는지 확인해보고자 하였다. 인간 대장상피세포에서 초산 자극은 튜블린 단백질의 아세틸화를 유의하게 증가시켰다. 또한 초산은 대장상피세포 속 미세소관 형성과정도 강하게 촉진시킴을 확인하였다. 초산은 톡신A에 의한 튜블린 탈아세틸화와 미세소관 불 형성 그리고 세포독성 모두를 유의하게 회복시켰다. 이상의 결과는 초산에 의한 미세소관 형성 촉진이 톡신A에 의해 초래되는 세포골격계 파괴와 그로 인한 세포독성을 억제할 수 있음을 보여준다. 따라서 초산이 톡신A의 작용을 차단하여 위막성대장염 증상을 완화시킬 수 있는 치료제로서 개발 가치가 있음을 보여준다.

Keywords

References

  1. Alger, J. R. and Prestegard, J. H. 1979. Nuclear magnetic resonance study of acetic acid permeation of large unilamellar vesicle membranes. Biophys. J. 28, 1-13. https://doi.org/10.1016/S0006-3495(79)85154-1
  2. Arregui, L. C., Munoz-Fontela, C., Serrano, S., Barasoain, I. and Guinea, A. 2002. Direct visualization of the microtubular cytoskeleton of ciliated protozoa with a fluorescent taxoid. J. Eukaryot. Microbiol. 49, 312-318. https://doi.org/10.1111/j.1550-7408.2002.tb00376.x
  3. Bicek, A. D., Tuzel, E., Demtchouk,A., Uppalapati, M., Hancock, W. O., Kroll, D. M. and Odde, D. J. 2009. Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells. Mol. Biol. Cell 20, 2943-2953. https://doi.org/10.1091/mbc.e08-09-0909
  4. Finnie, I. A., Dwarakanath, A. D., Taylor, B. A. and Rhodes, J. M. 1995. Colonic mucin synthesis is increased by sodium butyrate. Gut 36, 93-99. https://doi.org/10.1136/gut.36.1.93
  5. Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M. and Schreiber, S. L. 2003. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. USA. 100, 4389-4394. https://doi.org/10.1073/pnas.0430973100
  6. Han, Y., Malak, H., Chaudhary, A. G., Chordia, M. D., Kingston, D. G. and Bane, S. 1998. Distances between the paclitaxel, colchicine, and exchangeable GTP binding sites on tubulin. Biochemistry 37, 6636-6644. https://doi.org/10.1021/bi9719760
  7. He, D., Hagen, S. J., Pothoulakis, C., Chen, M., Medina, N. D., Warny, M. and LaMont, J. T. 2000. Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology 119, 139-150. https://doi.org/10.1053/gast.2000.8526
  8. Hecht, G., Pothoulakis, C., LaMont, J. T. and Madara, J. L. 1988. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J. Clin. Invest. 82, 1516-1524. https://doi.org/10.1172/JCI113760
  9. Henriques, B., Florin, I. and Thelestam, M. 1987. Cellular internalisation of Clostridium difficile toxin A. Microb. Pathog. 2, 455-463. https://doi.org/10.1016/0882-4010(87)90052-0
  10. Ho, J. G., Greco, A., Rupnik, M. and Ng, K. K. 2005. Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A. Proc. Natl. Acad. Sci. USA. 102, 18373-18378. https://doi.org/10.1073/pnas.0506391102
  11. Hou, J. K., Abraham, B. and El-Serag, H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am. J. Gastroenterol. 106, 563-573.
  12. Ishiguro, K., Ando, T., Maeda, O., Watanabe, O. and Goto, H. Suppressive action of acetate on interleukin-8 production via tubulin-alpha acetylation. Immunol. Cell Biol. 92, 624-630.
  13. Just, I., Fritz, G., Aktories, K., Giry, M., Popoff, M. R., Boquet, P., Hegenbarth, S. and von Eichel-Streiber, C. 1994. Clostridium difficile toxin B acts on the GTP-binding protein Rho. J. Biol. Chem. 269, 10706-10712.
  14. Just, I., Selzer, J., von Eichel-Streiber, C. and Aktories, K. 1995. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile. J. Clin. Invest. 95, 1026-1031. https://doi.org/10.1172/JCI117747
  15. Just, I., Selzer, J., Wilm, M., von Eichel-Streiber, C., Mann, M. and Aktories, K. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500-503. https://doi.org/10.1038/375500a0
  16. Just, I., Wilm, M., Selzer, J., Rex, G., von Eichel-Streiber, C., Mann, M. and Aktories, K. 1995. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 270, 13932-13936. https://doi.org/10.1074/jbc.270.23.13932
  17. Kelly, C. P. and LaMont, J. T. 1998. Clostridium difficile infection. Annu. Rev. Med. 49, 375-390. https://doi.org/10.1146/annurev.med.49.1.375
  18. Kelly, C. P. and LaMont, J. T. 2008. Clostridium difficile--more difficult than ever. N. Engl. J. Med. 359, 1932-1940. https://doi.org/10.1056/NEJMra0707500
  19. Kelly, C. P., Pothoulakis, C. and LaMont, J. T. 1994. Clostridium difficile colitis. N. Engl. J. Med. 330, 257-262. https://doi.org/10.1056/NEJM199401273300406
  20. Kim, C. H., Park, J. and Kim, M. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. Immune. Netw. 14, 277-288.
  21. Kim, D. H., Hwang, J. S., Lee, I. H., Nam, S. T., Hong, J., Zhang, P., Lu, L. F., Lee, J., Seok, H., Pothoulakis, C., Lamont, J. T. and Kim, H. The insect peptide CopA3 increases colonic epithelial cell proliferation and mucosal barrier function to prevent inflammatory responses in the gut. J. Biol. Chem. 291, 3209-3223.
  22. Kim, H., Kokkotou, E., Na, X., Rhee, S. H., Moyer, M. P., Pothoulakis, C. and Lamont, J. T. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129, 1875-1888. https://doi.org/10.1053/j.gastro.2005.09.011
  23. Kim, H., Rhee, S. H., Kokkotou, E., Na, X., Savidge, T., Moyer, M. P., Pothoulakis, C. and LaMont, J. T. 2005. Clostridium difficile toxin A regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280, 21237-21245. https://doi.org/10.1074/jbc.M413842200
  24. Kim, H., Rhee, S. H., Pothoulakis, C. and Lamont, J. T. 2007. Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133, 875-886. https://doi.org/10.1053/j.gastro.2007.06.063
  25. Lu, L. F., Kim, D. H., Lee, I. H., Hong, J., Zhang, P., Yoon, I. N., Hwang, J. S. and Kim, H. Potassium acetate blocks Clostridium difficile toxin A-induced microtubule disassembly by directly inhibiting histone deacetylase 6, thereby ameliorating inflammatory responses in the gut. J. Microbiol. Biotechnol. 26, 693-699.
  26. Maduzia, D., Matuszyk, A., Ceranowicz, D., Warzecha, Z., Ceranowicz, P., Fyderek, K., Galazka, K. and Dembinski, A. The influence of pretreatment with ghrelin on the development of acetic-acid-induced colitis in rats. J. Physiol. Pharmacol. 66, 875-885.
  27. Na, X., Zhao, D., Koon, H. W., Kim, H., Husmark, J., Moyer, M. P., Pothoulakis, C. and LaMont, J. T. 2005. Clostridium difficile toxin B activates the EGF receptor and the ERK/MAP kinase pathway in human colonocytes. Gastroenterology 128, 1002-1011. https://doi.org/10.1053/j.gastro.2005.01.053
  28. Nam, H. J., Kang, J. K., Kim, S. K., Ahn, K. J., Seok, H., Park, S. J., Chang, J. S., Pothoulakis, C., Lamont, J. T. and Kim, H. Clostridium difficile toxin A decreases acetylation of tubulin, leading to microtubule depolymerization through activation of histone deacetylase 6, and this mediates acute inflammation. J. Biol. Chem. 285, 32888-32896.
  29. Ogawa, N., Satsu, H., Watanabe, H., Fukaya, M., Tsukamoto, Y., Miyamoto, Y. and Shimizu, M. 2000. Acetic acid suppresses the increase in disaccharidase activity that occurs during culture of caco-2 cells. J. Nutr. 130, 507-513. https://doi.org/10.1093/jn/130.3.507
  30. Ouyang, B. and Howard, B. J. 2009. The monohydrate and dihydrate of acetic acid: a high-resolution microwave spectroscopic study. Phys. Chem. Chem. Phys. 11, 366-373. https://doi.org/10.1039/B814562H
  31. Pothoulakis, C. and Lamont, J. T. 2001. Microbes and microbial toxins: paradigms for microbial-mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G178-183. https://doi.org/10.1152/ajpgi.2001.280.2.G178
  32. Southwood, C. M., Peppi, M., Dryden, S., Tainsky, M. A. and Gow, A. 2007. Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem. Res. 32, 187-195. https://doi.org/10.1007/s11064-006-9127-6
  33. Topping, D. L. and Clifton, P. M. 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031-1064. https://doi.org/10.1152/physrev.2001.81.3.1031