DOI QR코드

DOI QR Code

Effect of LED Lighting Time on Productivity, Blood Parameters and Immune Responses of Dairy Cows

LED 점등시간이 젖소의 생산성, 혈액 매개변수 및 면역 반응에 미치는 영향

  • Park, Jin-Ryong (Department of Animal Biotechnology, Chonbuk National University) ;
  • Yoon, Nam-Jin (Dairy Management, Maeil Dairies Co., Ltd.) ;
  • Belal, Shah-Ahmed (Department of Poultry Science, Sylhet Agricultural University) ;
  • Shim, Kwan-Seob (Department of Animal Biotechnology, Chonbuk National University)
  • Received : 2018.07.04
  • Accepted : 2018.08.17
  • Published : 2018.08.31

Abstract

Light is an essential and powerful element to animals. A light-emitting diode (LED) is most efficient in terms of economic benefits. The aim of the present study was to evaluate the effects of LED lighting time on milk production, milk composition, and the immune response of Holstein cows. Forty lactating cows were assigned to four experimental groups: control; natural daylight, treatment; am3-6, pm6-12 and pm6-am6. We found that there was no significant effect on the decrease ratio in milk production among the groups. Milk urea nitrogen (MUN) was significantly decreased in pm6-am6 and pm6-12 than the control. With regard to the hemolytic biochemical analysis, GLU was significantly increased and CRE, T-BIL were significantly decreased in the pm6-12 than the control. IGF-1 levels were significantly increased in pm6-12 compared to other groups. Besides, cortisol was significantly lowered in the pm6-12 than the control, while prolactin, IgA and IgG were not significant among the groups. In addition, catalase and glutathione peroxidase were also significantly increased in pm6-12 than the control. However, antioxidant enzyme activity and superoxide dismutase were not significant among the experimental groups. Therefore, it was concluded that LED lighting time had some impact on blood parameters and immune responses in dairy cows without any changes in milk production.

Keywords

References

  1. AOAC. 1990. Official Methods of Analysis, 15th edn. Association of Official Analytical Chemists, Washington, DC.
  2. Auchtung, T., J. Salak-Johnson, D. Morin, C. Mallard, and G. Dahl. 2004. Effects of photoperiod during the dry period on cellular immune function of dairy cows. Journal of dairy science. 87(11): 3683-3689. https://doi.org/10.3168/jds.S0022-0302(04)73507-9
  3. Blatchford, R., K. Klasing, H. Shivaprasad, P. Wakenell, G. Archer, and J. Mench. 2009. The effect of light intensity on the behavior, eye and leg health, and immune function of broiler chickens. Poultry science. 88(1): 20-28. https://doi.org/10.3382/ps.2008-00177
  4. Blum, J., P. Kunz, H. Leuenberger, K. Gautschi, and M. Keller. 1983. Thyroid hormones, blood plasma metabolites and haematological parameters in relationship to milk yield in dairy cows. Animal Science. 36(1): 93-104. https://doi.org/10.1017/S0003356100039982
  5. Bobadilla-Mendez, M., C. Rojas-Granados, E. Andrade, P. Retes, L. Ferreira, R. Alvarenga, J. Rodriguez-Gil, E. Fassani, and M. Zangeronimo. 2016. Effect of different light sources on reproductive anatomy and physiology of Japanese quail (Coturnix coturnix japonica). Animal reproduction science. 168: 50-56. https://doi.org/10.1016/j.anireprosci.2016.02.025
  6. Crawford, H. M., D. E. Morin, E. H. Wall, T. B. McFadden, and G. E. Dahl. 2015. Evidence for a role of prolactin in mediating effects of photoperiod during the dry period. Animals. 5(3): 803-820. https://doi.org/10.3390/ani5030385
  7. Dahl, G. and D. Petitclerc. 2003. Management of photoperiod in the dairy herd for improved production and health. Journal of Animal Science. 81(15_suppl_3): 11-17. https://doi.org/10.2527/2003.81suppl_311x
  8. Dahl, G., B. Buchanan, and H. Tucker. 2000. Photoperiodic Effects on Dairy Cattle: A Review1. Journal of dairy science. 83(4): 885-893. https://doi.org/10.3168/jds.S0022-0302(00)74952-6
  9. Dahl, G., T. Auchtung, and P. Kendall. 2002. Photoperiodic effects on endocrine and immune function in cattle. Reproduction (Cambridge, England) Supplement. 59: 191-201.
  10. Dahl, G., T. Elsasser, A. Capuco, R. Erdman, and R. Peters. 1997. Effects of a Long Daily Photoperiod on Milk Yield and Circulating Concentrations of Insulin-Like Growth Factor-I1. Journal of Dairy Science. 80(11): 2784-2789. https://doi.org/10.3168/jds.S0022-0302(97)76241-6
  11. Dunlap, T., R. Kohn, G. Dahl, R. Erdman, and M. Varner. 2000. The impact of bovine somatotropin, three times daily milking or extended photoperiod on nitrogen flows from dairy farms. J. Dairy Sci. 83: 968-976. https://doi.org/10.3168/jds.S0022-0302(00)74961-7
  12. Egena, S. and R. Alao. 2014. Haemoglobin polymorphism in selected farm animals: a review. Biotechnology in Animal Husbandry. 30(3): 377-390. https://doi.org/10.2298/BAH1403377E
  13. Folman, Y., H. Neumark, M. Kaim, and W. Kaufmann. 1981. Performance, Rumen and Blood Metabolites in High-Yielding Cows Fed Varying Protein Percents and Protected Soybean1. Journal of Dairy Science. 64(5): 759-768. https://doi.org/10.3168/jds.S0022-0302(81)82645-8
  14. Foss, D., L. Carew Jr., and E. Arnold. 1972. Physiological development of cockerels as influenced by selected wavelengths of environmental light. Poultry science. 51(6): 1922-1927. https://doi.org/10.3382/ps.0511922
  15. Furukawa, T., S. Manabe, T. Watanabe, S. Sehata, S. Sharyo, T. Okada, and Y. Mori. 1999. Daily fluctuation of hepatic P450 monooxygenase activities in male rats is controlled by the suprachiasmatic nucleus but remains unaffected by adrenal hormones. Archives of toxicology. 73(7): 367-372. https://doi.org/10.1007/s002040050675
  16. Guo, M. and G. Wang. 2016. Milk protein polymer and its application in environmentally safe adhesives. Polymers. 8(9): 324. https://doi.org/10.3390/polym8090324
  17. Gustafsson, A. and D. Palmquist. 1993. Diurnal variation of rumen ammonia, serum urea, and milk urea in dairy cows at high and low yields1. Journal of dairy science. 76(2): 475-484. https://doi.org/10.3168/jds.S0022-0302(93)77368-3
  18. Hackney, A. C. and E. A. Walz. 2013. Hormonal adaptation and the stress of exercise training: the role of glucocorticoids. Trends in sport sciences. 20(4): 165.
  19. Jonker, J., R. Kohn, and J. High. 2002. Dairy Herd Management Practices that Impact Nitrogen Utilization Efficiency1. Journal of Dairy Science. 85(5): 1218-1226. https://doi.org/10.3168/jds.S0022-0302(02)74185-4
  20. Kappen, K. 2012. Effects of photoperiod on weight maintenance in adult neutered male cats.
  21. Kato, H., M. Mizutani-Funahashi, S. Shiosaka, and H. Nakagawa. 1978. Circadian rhythms of urea formation and argininosuccinate synthetase activity in rat liver. The Journal of nutrition. 108(7): 1071-1077. https://doi.org/10.1093/jn/108.7.1071
  22. Kollmann, M. T. 2007. Importance of light and of the serotonin-melatonin-system on neurophysiology of milk synthesis and ejection in dairy cows. Technische Universitat Munchen.
  23. Kott, K. S., B. J. Moore, and B. A. Horwitz. 1986. Decreased testosterone levels do not mediate short-photoperiod-induced brown fat changes. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 251(5): R963-R970. https://doi.org/10.1152/ajpregu.1986.251.5.R963
  24. Lazarin, G. B., N. G. Alves, J. R. O. Perez, R. R. d. Lima, I. F. F. Garcia, A. Jose Neto, D. N. C. d. Vale, and G. d. A. Saunders. 2012. Plasma urea nitrogen and progesterone concentrations and follicular dynamics in ewes fed proteins of different degradability. Revista Brasileira de Zootecnia. 41(7): 1638-1647. https://doi.org/10.1590/S1516-35982012000700012
  25. Lefcourt, A., J. Huntington, R. Akers, D. Wood, and J. Bitman. 1999. Circadian and ultradian rhythms of body temperature and peripheral concentrations of insulin and nitrogen in lactating dairy cows. Domestic animal endocrinology. 16(1): 41-55. https://doi.org/10.1016/S0739-7240(98)00047-2
  26. Limberaki, E., P. Eleftheriou, G. Gasparis, E. Karalekos, V. Kostoglou, and C. Petrou. 2011. Cortisol levels and serum antioxidant status following chemotherapy. Health. 3(08): 512. https://doi.org/10.4236/health.2011.38085
  27. Mikolayunas, C., D. Thomas, G. Dahl, T. Gressley, and Y. Berger. 2008. Effect of prepartum photoperiod on milk production and prolactin concentration of dairy ewes. Journal of dairy science. 91(1): 85-90. https://doi.org/10.3168/jds.2007-0586
  28. Moore, M., J. W. Tyler, M. Chigerwe, M. E. Dawes, and J. R. Middleton. 2005. Effect of delayed colostrum collection on colostral IgG concentration in dairy cows. Journal of the American Veterinary Medical Association. 226(8): 1375-1377. https://doi.org/10.2460/javma.2005.226.1375
  29. Mucha, S. and E. Strandberg. 2011. Genetic analysis of milk urea nitrogen and relationships with yield and fertility across lactation. Journal of dairy science. 94(11): 5665-5672. https://doi.org/10.3168/jds.2010-3916
  30. Odihambo Mumma, J., J. Thaxton, Y. Vizzier-Thaxton, and W. Dodson. 2006. Physiological stress in laying hens. Poultry science. 85(4): 761-769. https://doi.org/10.1093/ps/85.4.761
  31. Penev, T., V. Radev, T. Slavov, V. Kirov, D. Dimov, A. Atanassov, and I. Marinov. 2014. Effect of lighting on the growth, development, behaviour, production and reproduction traits in dairy cows. Int. J. Curr. Microbiol. App. Sci. 3(11): 798-810.
  32. Peters, R., L. Chapin, R. Emery, and H. Tucker. 1981. Milk Yield, Feed Intake, Prolactin, Growth Hormone, and Glucocorticoid Response of Cows to Supplemented Light1. Journal of Dairy Science. 64(8): 1671-1678. https://doi.org/10.3168/jds.S0022-0302(81)82745-2
  33. Piccione, G., F. Grasso, F. Fazio, A. Assenza, and G. Caola. 2007. Influence of different schedules of feeding on daily rhythms of blood urea and ammonia concentration in cows. Biological Rhythm Research. 38(2): 133-139. https://doi.org/10.1080/09291010600913964
  34. Pritchett, L. C., C. C. Gay, D. D. Hancock, and T. E. Besser. 1994. Evaluation of the Hydrometer for Testing Immunoglobulin G1 Concentrations in Holstein Colostrum1. Journal of dairy science. 77(6): 1761-1767. https://doi.org/10.3168/jds.S0022-0302(94)77117-4
  35. Rius, A., E. Connor, A. Capuco, P. Kendall, T. Auchtung-Montgomery, and G. Dahl. 2005. Long-day photoperiod that enhances puberty does not limit body growth in Holstein heifers. Journal of dairy science. 88(12): 4356-4365. https://doi.org/10.3168/jds.S0022-0302(05)73122-2
  36. Rozenboim, I., B. Robinzon, and A. Rosenstrauch. 1999. Effect of light source and regimen on growing broilers. British Poultry Science. 40(4): 452-457. https://doi.org/10.1080/00071669987197
  37. Rozenboim, I., I. Biran, Y. Chaiseha, S. Yahav, A. Rosenstrauch, D. Sklan, and O. Halevy. 2004. The effect of a green and blue monochromatic light combination on broiler growth and development. Poultry science. 83(5): 842-845. https://doi.org/10.1093/ps/83.5.842
  38. Schwalm, J. and L. Schultz. 1976. Relationship of Insulin Concentration to Blood Metabolites in the Dairy Cow1. Journal of dairy science. 59(2): 255-261. https://doi.org/10.3168/jds.S0022-0302(76)84192-6
  39. Scott, T., B. Yandell, L. Zepeda, R. Shaver, and T. Smith. 1996. Use of lactation curves for analysis of milk production data. Journal of Dairy Science. 79(10): 1885-1894. https://doi.org/10.3168/jds.S0022-0302(96)76557-8
  40. Seo, H.-S., M. Kang, R.-H. Yoon, J.-H. Roh, B. Wei, K. S. Ryu, S.-Y. Cha, and H.-K. Jang. 2015. Effects of various LED light colors on growth and immune response in broilers. The Journal of Poultry Science. 53(1): 76-81. https://doi.org/10.2141/jpsa.0150046
  41. Smith, H. 1982. Light quality, photoperception, and plant strategy. Annual review of plant physiology. 33(1): 481-518. https://doi.org/10.1146/annurev.pp.33.060182.002405
  42. Stendel, W. 1980. The relevance of different test methods for the evaluation of tick controlling substances. Journal of the South African Veterinary Association. 51(3): 147-152.
  43. Stoop, W., H. Bovenhuis, and J. Van Arendonk. 2007. Genetic parameters for milk urea nitrogen in relation to milk production traits. Journal of Dairy Science. 90(4): 1981-1986. https://doi.org/10.3168/jds.2006-434
  44. Sundrum, A. 2015. Metabolic disorders in the transition period indicate that the dairy cows' ability to adapt is overstressed. Animals. 5(4): 978-1020. https://doi.org/10.3390/ani5040395
  45. Tacoma, R., J. Fields, D. B. Ebenstein, Y.-W. Lam, and S. L. Greenwood. 2016. Characterization of the bovine milk proteome in early-lactation Holstein and Jersey breeds of dairy cows. Journal of proteomics. 130: 200-210. https://doi.org/10.1016/j.jprot.2015.09.024
  46. Tucker, H. A., D. Petitclerc, and S. Zinn. 1984. The Influence of Photoperiod on Body Weight Gain, Body Composition, Nutrient Intake and Hormone Secretion 1, 2. Journal of animal science. 59(6): 1610-1620. https://doi.org/10.2527/jas1984.5961610x
  47. Vaughan, M., G. Buzzell, R. Hoffman, A. Menendez-Pelaez, and R. Reiter. 1994. Insulinlike growth factor-1 in Syrian hamsters: interactions of photoperiod, gonadal steroids, pinealectomy, and continuous melatonin treatment. Proceedings of the Society for Experimental Biology and Medicine. 205(4): 327-331. https://doi.org/10.3181/00379727-205-43714
  48. Verweij, J., A. Koets, and S. Eisenberg. 2014. Effect of continuous milking on immunoglobulin concentrations in bovine colostrum. Veterinary immunology and immunopathology. 160(3-4): 225-229. https://doi.org/10.1016/j.vetimm.2014.05.008
  49. Viitala, S., J. Szyda, S. Blott, N. Schulman, M. Lidauer, A. Maki-Tanila, M. Georges, and J. Vilkki. 2006. The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire dairy cattle. Genetics.
  50. Weaver, D. M., J. W. Tyler, D. C. VanMetre, D. E. Hostetler, and G. M. Barrington. 2000. Passive transfer of colostral immunoglobulins in calves. Journal of Veterinary Internal Medicine. 14(6): 569-577. https://doi.org/10.1111/j.1939-1676.2000.tb02278.x
  51. Wood, G., P. Boettcher, J. Jamrozik, G. Jansen, and D. Kelton. 2003. Estimation of genetic parameters for concentrations of milk urea nitrogen. Journal of Dairy Science. 86(7): 2462-2469. https://doi.org/10.3168/jds.S0022-0302(03)73840-5
  52. Xie, D., J. Li, Z. Wang, J. Cao, T. Li, J. Chen, and Y. Chen. 2011. Effects of monochromatic light on mucosal mechanical and immunological barriers in the small intestine of broilers. Poultry science. 90(12): 2697-2704. https://doi.org/10.3382/ps.2011-01416
  53. Xie, D., Z. Wang, Y. Dong, J. Cao, J. Wang, J. Chen, and Y. Chen. 2008. Effects of monochromatic light on immune response of broilers. Poultry Science. 87(8): 1535-1539. https://doi.org/10.3382/ps.2007-00317
  54. Zhang, Z., M. Bi, J. Yang, H. Yao, Z. Liu, and S. Xu. 2017. Effect of phosphorus deficiency on erythrocytic morphology and function in cows. Journal of veterinary science. 18(3): 333-340.