DOI QR코드

DOI QR Code

구조용 폼의 조성 및 열 노화에 따른 변형특성 관찰

Investigation of Properties of Structural Foam with Different Conformation and via Thermal Aging Condition

  • Choe, Jin-Yeong (Korea Dyeing and Finishing Technology Institute, Polymer Resin Team) ;
  • Kwon, Il-Jun (Korea Dyeing and Finishing Technology Institute, Polymer Resin Team) ;
  • Park, Sung-Min (Korea Dyeing and Finishing Technology Institute, Polymer Resin Team) ;
  • Kwon, Dong-Jun (Korea Dyeing and Finishing Technology Institute, Polymer Resin Team)
  • 투고 : 2018.05.28
  • 심사 : 2018.08.22
  • 발행 : 2018.08.31

초록

섬유강화고분자복합재료(CFRP, Carbon Fiber Reinforced Plastics)의 경량화는 자동차 및 항공 분야에서 끊임없이 요구되고 있으며, 구조용 폼과 CFRP를 혼합하여 샌드위치 복합재료로 사용되고 있다. 본 연구에서는 열경화성 소재인 에폭시 폼과 폴리우레탄 폼 및 열가소성 소재인 PET 폼과 PVC 폼의 조성 차이에 따른 폼의 형상 및 열 노화를 통해 변화되는 기계적 특성 변화를 관찰하였다. 성형한 에폭시 폼, 폴리우레탄 폼 및 상용화된 PET 폼과 PVC폼을 180도에서 열 노화시켰으며, 30, 60, 120, 180분의 노화시간에 따라 구조용 폼의 변화를 광학 현미경 및 만능시험기로 폼 셀의 형상 및 압축강도를 평가하였다. 궁극적으로 에폭시 폼이 가장 높은 2.6 MPa의 압축강도를 가졌으며, 열 노화 조건에서도 물성저하나 형상의 변화가 거의 발생되지 않았다. 이는 에폭시 폼이 타 구조용 폼에 비해 열 노화 조건에서 후경화되어 강직한 조성을 이루며, 타 구조용 폼과는 다르게 내열 특성이 우수하기 때문에 고온용 구조용 폼으로 적용하기 적합한 소재임을 확인하였다.

Sandwich composites of carbon fiber reinforced plastic(CFRP) and polymer foam will be used to automobile and aerospace industry according to increasing importance of light weight. In this study, mechanical and heat resistance properties of sandwich composites were compared with type of polymer foam (polyethylene terephthalate(PET), polyvinylchloride(PVC), epoxy and polyurethane). All types of polymer foams were degraded to 30, 60, 120, 180 minutes in $180^{\circ}C$. After heat degradation, the polymer foams were observed using optical microscope and compressive test was performed using universal testing machine(UTM). Epoxy foam had the highest compressive property to 2.6 MPa and after thermal degradation, the mechanical property and structure of foam were less changed than others. Epoxy foam had better mechanical properties than other polymer foams under high temperature. Because the epoxy foam was post cured under high temperature. As the results, Epoxy foam was optimal materials to apply to structures that thermal energy was loaded constantly.

키워드

참고문헌

  1. Kim, K.S., Bae, K.M., Oh, S.Y., Seo, M.K., Kang, C.G., and Park, S.J., "Trend of Carbon Fiber-reinforced Composites for Lightweight Vehicles," Elastomers and Composites, Vol. 47, No. 1, 2012, pp. 65-74. https://doi.org/10.7473/EC.2012.47.1.065
  2. Meschut, G., Janzen, V., and Olfermann, T., "Innovative and Highly Productive Joining Technologies for Multi-Material Lightweight Car Body Structures," Journal of Materials Engineering and Performance, Vol. 23, No. 5, 2014, pp. 1515-1523. https://doi.org/10.1007/s11665-014-0962-3
  3. Ahn, W.S., and Lee, B.Y., "Fabrication of Inorganic Filler-Polyurethane Composite Foam and Postcure Effect on Mechanical Properties," Journal of the Korea Academia-Industrial cooperation Society, Vol. 12, No. 5, 2011, pp. 2451-2456. https://doi.org/10.5762/KAIS.2011.12.5.2451
  4. Hirsch, J., "Aluminium in Innovative Light-weight Car Design," Materials Transactions, Vol. 52. No. 5, 2011, pp. 818-824. https://doi.org/10.2320/matertrans.L-MZ201132
  5. Kim, J., Kim, K.D., Kim, S., Shin, D., and Kim, D., "Development of Carbon Continuous-fiber Composite Frame for Automotive Sun-roof Assembly," Transactions of the Korean Society of Automotive Engineers, Vol. 25, No. 3, 2017, pp. 350-359. https://doi.org/10.7467/KSAE.2017.25.3.350
  6. Obradovic, J., Boria, S., and Belingardi, G., "Lightweight Design and Crash Analysis of Composite Frontal Impact Energy Absorbing Structures," Composite Structures, Vol. 94, No. 2, 2012, pp. 423-430. https://doi.org/10.1016/j.compstruct.2011.08.005
  7. Kim, S.T., "Development Trend for Thermoplastic Polymer Composite," Polymer Science and Technology, Vol. 24, No. 1, 2013, pp. 25-29.
  8. Jang, S.Y., and Kim, S., "Effect of Blowing Agents on Properties of Phenolic Foam," Journal of the Korean Institute of Gas, Vol. 20, No. 2, 2016, pp. 30-34. https://doi.org/10.7842/kigas.2016.20.2.30
  9. Lee, J.C., Seo, J.S., and Kim, S.B., "Study on Flame Retardancy and Thermal Resistance Properties of Phenolic Foam and Polyurethane Foam," Journal of the Korean Institute of Gas, Vol. 17, No. 1, 2013, pp. 35-41. https://doi.org/10.7842/kigas.2013.17.1.35
  10. Yanez-Flores, I.G., Ibarra-Gomez, R., Rodriguez-Fernandez, O. S., and Gilbert, M., "Peroxide Crosslinking of PVC Foam Formulations," European Polymer Journal, Vol. 36, No. 10, 2000, pp. 2235-2241. https://doi.org/10.1016/S0014-3057(99)00295-5
  11. Kim, D., and Lee, S., "Properties and Thermal Characteristics of Phenol Foam for Heat Insulating Materials," Journal of Korean Industrial and Engineering Chemistry, Vol. 17, No. 4, 2006, pp. 357-360.
  12. Mazzon, E., Habas-Ulloa, A., and Habas, J.P., "Lightweight Rigid Foams From Highly Reactive Epoxy Resins Derived from Vegetable Oil for Automotive Applications," European Polymer Journal, Vol. 68, 2015, pp. 546-557. https://doi.org/10.1016/j.eurpolymj.2015.03.064
  13. El Gazzani, S., Nassiet, V., Habas, J.P., Freydier, C., and Hilleshein, A., "High Temperature Epoxy Foam: Optimization of Process Parameters," Polymers, Vol. 8, No. 6, pp. 2016. 215. https://doi.org/10.3390/polym8060215
  14. Song, B., Chen, W., and Lu, W.Y., "Compressive Mechanical Response of a Low-density Epoxy Foam at Various Strain Rates," Journal of Materials Science, Vol. 42, No. 17, 2007, pp. 7502-7507. https://doi.org/10.1007/s10853-007-1612-z
  15. Tang, Z., Maroto-Valer, M.M., Andresen, J.M., Miller, J.W., Listemann, M.L., McDaniel, P.L., Morita, D.K., and Furlan, W.R., "Thermal Degradation Behavior of Rigid Polyurethane Foams Prepared with Different Fire Retardant Concentrations and Blowing Agents," Polymer, Vol. 43, No. 24, 2002, pp. 6471-6479. https://doi.org/10.1016/S0032-3861(02)00602-X
  16. Kwon, H.J., Park, H.J., Lee, E.J., Ku, S.M., Kim, S.H., and Lee, K.Y., "Study of the Curing Reaction Rate of a Glass Fiber Reinforced Bisphenol-A (BPA) Epoxy Prepreg by Differential Scanning Calorimetry (DSC)," Composites Research, Vol. 31, No. 1, 2018, pp. 30-36. https://doi.org/10.7234/COMPOSRES.2018.31.1.030