DOI QR코드

DOI QR Code

용융가압함침공정을 이용한 세라믹 입자 강화 철강복합재료의 제조성 검증

Fabrication of Ceramic Particulate Reinforced Steel Composites by Liquid Pressing Infiltration Process

  • Cho, Seungchan (Composites Research Division, Korea Institute of Materials Science) ;
  • Lee, Yeong-Hwan (Composites Research Division, Korea Institute of Materials Science) ;
  • Ko, Seongmin (Composites Research Division, Korea Institute of Materials Science) ;
  • Park, Hyeon Jae (Composites Research Division, Korea Institute of Materials Science) ;
  • Lee, Donghyun (Composites Research Division, Korea Institute of Materials Science) ;
  • Shin, Sangmin (Composites Research Division, Korea Institute of Materials Science) ;
  • Jo, Ilguk (Composites Research Division, Korea Institute of Materials Science) ;
  • Lee, Sang-Kwan (Composites Research Division, Korea Institute of Materials Science) ;
  • Lee, Sang-Bok (Composites Research Division, Korea Institute of Materials Science)
  • 투고 : 2018.06.08
  • 심사 : 2018.08.23
  • 발행 : 2018.08.31

초록

본 연구에서는 용융가압함침 공정을 이용하여 TiC, $TiB_2$, $Al_2O_3$ 세라믹 입자가 분산된 SUS431 금속복합재료를 제조하고 미세조직을 분석하여 세라믹 입자에 따른 제조성에 대해 검토하였다. 젖음성이 나쁜 $Al_2O_3$의 경우 내부에 결함이 다수 존재함을 알 수 있었으며, $TiB_2$ 및 TiC 입자 강화 복합재의 경우 상대적으로 결함이 적고 강화재가 균일 분산되었음을 확인하였다. 특히, TiC-SUS431 복합재료의 경우 TiC와 Fe계 기지합금의 우수한 젖음성 및 용융가압함침공정 적용으로 우수한 계면 특성을 가지며 결함이 적고 균일한 미세조직을 가지는 것을 확인하였다.

Various ceramic particulate such as TiC, $TiB_2$, $Al_2O_3$ reinforced SUS431 matrix composites were successfully fabricated by a novel liquid pressing infiltration process. Microstructures of the SUS431 composite were analyzed to determine manufacturability of composites. $Al_2O_3$-SUS431 composite had lots of defects due to poor wettability between the $Al_2O_3$ and steel matrix. On the other hand, TiC was uniformly dispersed in the SUS431 matrix than $TiB_2$ and $Al_2O_3$ due to good wettability and interfacial properties.

키워드

참고문헌

  1. Lee, D., Cho, S., Kim, Y., Lee, S.-K., Lee, S.-B., and Jo, I., "Mechanical Properties and Wear Performance of the Al7075 Composites Reinforced with Bimodal Sized SiC Particles", Composites Research, Vol. 30, No. 5, 2017, pp. 1-6. https://doi.org/10.7234/composres.2017.30.1.001
  2. Cho, S., Jo, I., Lee, S.-K., and Lee, S.-B., "Microstructure and Wear Characteristics of TiC-SKD11 Composite Fabricated by Liquid Pressing Infiltration Process", Composites Research, Vol. 30, No. 3, 2017, pp. 209-214. https://doi.org/10.7234/COMPOSRES.2017.30.3.209
  3. Oh, N.R., Lee, S.K., Hwang, K.C., and Hong, H.U., "Characterization of Microstructure and Tensile Fracture Behavior in a Novel Infiltrated TiC-steel Composite," Scripta Materialia, Vol. 112, 2016, pp. 123-127. https://doi.org/10.1016/j.scriptamat.2015.09.028
  4. Cho, S., Jo, I., Kim, H., Kwon, H.-T., Lee, S.-K., and Lee, S.-B., "Effect of TiC Addition on Surface Oxidation Behavior of SKD11 Tool Steel Composites", Applied Surface Science, Vol. 415, 2017, pp. 155-160. https://doi.org/10.1016/j.apsusc.2016.11.164
  5. Qi, Q., Liu, Y., and Huang Z., "Promising Metal Matrix Composites (TiC/Ni-Cr) for Intermediate-temperature Solid Oxide Fuel Cell (SOFC) Interconnect Applications", Scripta Materialia, Vol. 109, 2015, pp. 56-60. https://doi.org/10.1016/j.scriptamat.2015.07.017
  6. Oh, N.-R., Lee, S.-K., Cho S.-C., Jo, I.-G., Hwang, K.-C., Kim, D.-H., Cho, Y.-T., Sur, D.-W., and Hong, H.U., "Temperature Dependency of the Tensile Characteristics and Transition of Fracture Behaviors in a Novel Infiltrated TiC-SKD11 Composites", Korean Journal of Metals and Materials, Vol. 55, No. 3, 2017, pp. 156-164.
  7. Xuan, C., Shibata, H., Sukenaga, S., Jonsson, P.G., and Nakajima, K., "Wettability of $Al_2O_3$, MgO and $Ti_2O_3$ by Liquid Iron and Steel", ISIJ International, Vol. 55, No. 9, 2015, No. 9, pp. 1882-1890. https://doi.org/10.2355/isijinternational.ISIJINT-2014-820
  8. Parashivamurthy, K.I., Kumar, R.K., Seetharamu, S., and Chandrasekharaiah, M.N., "Review on TiC Reinforced Steel Composites", Journal of Materials Science, Vol. 36, 2002, pp. 4519-4530.
  9. Chumanov, I.V., and Anikeev, A.N., "Effect of Atmosphere on the Wetting of Titanium Carbide with Liquid Low-carbon Steel", Russian Metallurgy, Vol. 2016, No. 12, 2016, pp. 1145-1147. https://doi.org/10.1134/S0036029516120065
  10. Fedrizzi, A., Pellizzari, M., Zadra, M., and Marin, E., "Microstructural Study and Densification Analysis of Hot Work Tool Steel Matrix Composites Reinforced with $TiB_2$ Particles", Materials Characterization, Vol. 86, 2013, pp. 69-79. https://doi.org/10.1016/j.matchar.2013.09.012
  11. Lartigue-Korinek, S., Walls, M., Haneche, N., Cha, L., Mazerolles, L., and Bonnet, F., "Interfaces and Defects in a Successfully Hot-rolled Steel-based Composite $Fe-TiB_2$", Acta Materialia, Vol. 98, 2015, pp. 297-305. https://doi.org/10.1016/j.actamat.2015.07.024
  12. Liu, J., Chen, W., Chen, L., Xia, Z., Xiao, H., and Fu, Z., "Microstructure and Mechanical Behavior of Spark Plasma Sintered $TiB_2/Fe-15Cr-8Al-20Mn$ Composites", Journal of Alloys and Compounds, Vol. 747, 2018, pp. 886-894. https://doi.org/10.1016/j.jallcom.2018.03.113