DOI QR코드

DOI QR Code

Topology Optimization Design of Machine Tools Head Frame Structures for the Machining of Aircraft Parts

항공기부품가공용 공작기계 헤드프레임 구조의 위상최적화 설계

  • Yun, Taewook (HWACHEON Machinery Co., LTD.) ;
  • Lee, Seoksoon (Dept. of Mechanical Engineering Research Institute, Gyeongsang University)
  • Received : 2018.03.08
  • Accepted : 2018.07.08
  • Published : 2018.08.31

Abstract

The head frame structure of a machine tool for aircraft parts, which requires machining precision and machining of difficult-to-cut materials is required to be light-weighted for precision high-speed machining and to minimize possible deformation by cutting force. To achieve high stiffness and for light-weight structure optimization design, a preliminary model was designed based on finite element analysis. The topology optimization design of light-weight, high stiffness, and low vibration frame structure were performed by minimizing compliance. As a result, the frame weight decreased by 17.3%, the maximum deflection was less than 0.007 mm, and the natural frequency increased by 30.6%. The static stiffness was increased in each axis direction and the dynamic stiffness exhibited contrary results according to the axis. Optimized structure with the high stiffness of low vibration in topology optimization design was confirmed.

가공의 정밀도와 난삭재 가공이 요구되는 항공기부품용 공작기계의 헤드프레임 구조는 정밀 고속가공을 위해 경량화 및 절삭력에 의한 변형최소화가 필요하다. 본 논문에서는 고강성 경량화 구조 최적설계를 위해 유한요소해석을 수행하여 초기형상을 설계하였고, 컴플라이언스를 최소화하여 경량, 고강성 및 저진동 구조의 위상 최적화 설계를 수행하였다. 최적화 설계결과 프레임 중량은 17.3% 감소되었고, 최대 처짐량은 0.007 mm 이하, 고유진동수는 30.6% 증가되었다. 구조 정강성은 각 축 방향으로 증가되었고, 동강성은 축에 따라 상반된 결과를 나타내었다. 위상 최적화 설계 구조에서 저진동의 고강성을 갖는 최적화된 구조를 확인하였다.

Keywords

References

  1. M. G. Lee, S. H. Nam, and D. Y. Lee, "Lightweight of Movable Part for Energy Reduction of 5-axis Machining Center", J Korean Soc. Precis. Enq., Vol. 30, No. 5, pp. 474-479, May, 2013. https://doi.org/10.7736/KSPE.2013.30.5.474
  2. H. J. Kang, "Design Optimization of QTP-UAV Prop-Rotor Blade Using Model Center", Journal of The Society for Aerospace System Engineering, Vol. 11, No. 4, pp. 36-43, November, 2017.
  3. J. J. Lee, M. J. Kim, Y. H. Kim, J. C. Shin, and K. M. Hwang, "Composite Skid Landing Gear Optimal Design for Light VTOL UAV", Journal of The Society for Aerospace System Engineering, Vol. 9, No. 4, pp. 55-61, December, 2015.
  4. J. H. Song, M. H. Park, H. B. Kang, I. S. Pack, D. W. Lee, G. G. Lee and S. S. Lee, "Lightweight Design for Windlass Base Frame Using Optimal Design Technique", Journal of The Korean Society of Marine Engineering, Vol. 37, No. 5, pp. 477-483, 2013. https://doi.org/10.5916/jkosme.2013.37.5.477
  5. M. G. Kim, S. H. Lee, I. J. Jeong, H. S. Choi, Y. D. Kwon, Y. S. Pyoun and S. S. Lee, "A Study on Topology Optimization of the Traveling Decelerator Gear Carrier", J Korean Soc. Precis. Enq. Vol. 2008, No. 6, pp. 723-724, June, 2008.
  6. J. W. Park, D. S. Kang, S. M. Tak, J. K. Kim, C. K. Song, S. S. Lee, and J. W. Park, " Topology Optimization of a Transmission Case", Journal of The KSPE, Vol. 27, No. 11, pp. 57-62, November, 2010.
  7. H. W. Shin, and Y. J. Chung, "Dynamic Stiffness and Frequency Response Analysis for the Development of Magnesium Oil Pans", Transactions of KSAE, Vol. 17, No. 2, pp. 141-149, 2009.
  8. T. M. Cho, E. K. Lee, H. I. Seo and K. H. Rim, "Mode Truncation Method in Frequency", Trans Response Analysis", Journal of The Korean Institute of Intelligent Systems, Vol. 12, No. 1, pp. 39-43, 2002. https://doi.org/10.5391/JKIIS.2002.12.1.039