DOI QR코드

DOI QR Code

Suppressive Effect of Fermented Angelica tenuissima Root Extract against Photoaging: Possible Involvement of Hemeoxygenase-1

  • Park, Yun-A (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Lee, Sung Ryul (Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University) ;
  • Lee, Jin Woo (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Koo, Hyun Jung (Department of Medicinal and Industrial Crops, Korea National College of Agriculture and Fisheries) ;
  • Jang, Seon-A (Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Yun, Seung-Won (Chungbuk Technopark) ;
  • Kim, Hyun Ju (Chungbuk Technopark) ;
  • Woo, Jeong Suk (Chungbuk Technopark) ;
  • Park, Myung Rye (Korea Research Institute Bio Science Co., Ltd.) ;
  • Kang, Se Chan (Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Kim, Youn Kyu (Korea Research Institute Bio Science Co., Ltd.) ;
  • Sohn, Eun-Hwa (Department of Herbal Medicine Resource, Kangwon National University)
  • Received : 2018.05.28
  • Accepted : 2018.07.23
  • Published : 2018.08.28

Abstract

Angelica tenuissima root has historically been used as a traditional medicine in Korea. Previous studies have identified the anti-melanogenic effects of the extract of A. tenuissima root fermented by Aspergillus oryzae (FAT). This study investigated the protective effects of FAT against ultraviolet light B exposure (UVB; $30mJ/cm^2$) in HaCaT (human keratinocyte) or Hs68 (human foreskin fibroblast) skin cells. FAT treatment was able to stimulate wound healing rate at the basal condition. FAT also favored the maintenance and/or improvement of extracellular matrix impairment caused by UVB irradiation through: 1) upregulation of procollagen Type-1 synthesis and secretion; 2) suppression of MMP-1 and elastase expression. FAT was able to play a role in the attenuation of inflammatory responses caused by UVB irradiation via upregulation of photo-protective hemeoxygease-1 and suppression of proinflammatory cyclooxygenase-2 expression. After further verification of the anti-photoaging potential of FAT, it could be utilized as an effective ingredient in anti-aging and anti-wrinkle cosmetics.

Keywords

References

  1. Smit N, Vicanova J, Pavel S. 2009. The hunt for natural skin whitening agents. Int. J. Mol. Sci. 10: 5326-5349. https://doi.org/10.3390/ijms10125326
  2. Yaar M, Gilchrest BA. 1998. Aging versus photoaging: postulated mechanisms and effectors. J. Invest. Dermatol. Symposium Proceedings 3: 47-51.
  3. Allemann IB, Baumann L. 2009. Botanicals in skin care products. Int. J. Dermatol. 48: 923-934. https://doi.org/10.1111/j.1365-4632.2009.04081.x
  4. Ka MH, Choi EH, Chun H S, Lee KG. 2005. A ntioxidative activity of volatile extracts isolated from Angelica tenuissimae roots, peppermint leaves, pine needles, and sweet flag leaves. J. Agric. Food Chem. 53: 4124-4129. https://doi.org/10.1021/jf047932x
  5. Han BH, Sung CK, Takeatsu K, But PPH, Guo J-X. 1998. International Collation of Traditional and Folk Medicine pp. Ed. World Scientific Publishing Co. Pte. Ltd., Signapore.
  6. Kim CM, Sin MK, Ahn DK, Lee KS, Dictionary of Chinese Materia Medica [in Korean], Jungdam Publishing S, 1997, 255 pp. 1997. Dictionary of Chinese Materia Medica [in Korean], pp. 255. Ed. Jungdam Publishing, Seoul.
  7. Weeratunga P, Uddin MB, Kim MS, Lee BH, Kim TH, Yoon JE, et al. 2016. Interferon-mediated antiviral activities of Angelica tenuissima Nakai and its active components. J. Microbiol. (Seoul, Korea) 54: 57-70.
  8. Ahn SJ, Baek JM, Cheon YH, Park SH, Lee MS, Oh J, et al. 2015. The inhibitory effect of Angelica Tenuissima water extract on receptor activator of nuclear factor-kappa-B ligand-induced osteoclast differentiation and bone resorbing activity of mature osteoclasts. Am. J. Chin. Med. 43: 715-729. https://doi.org/10.1142/S0192415X15500445
  9. Lee SH, Choi H, Kim H, Lee H, Sung YH, Kim SE, et al. 2010. Inhibitory effect of Angelicae Tenuissimae Radix on expressions of cyclooxygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells. Neurol. Res. 32 (Suppl 1): 58-63. https://doi.org/10.1179/016164109X12537002794048
  10. Shin YK, Son HU, Kim JM, Heo JC, Lee SH, Kim JG. 2015. Cinnamomum cassia bark produced by solid-state fermentation with Phellinus baumii has the potential to alleviate atopic dermatitis-related symptoms. Int. J. Mol. Med. 35: 187-194. https://doi.org/10.3892/ijmm.2014.2006
  11. Kim OK, Chang JY, Nam DE, Park YK, Jun W, Lee J. 2015. Effect of Canavalia gladiata extract fermented with Aspergillus oryzae on the development of atopic dermatitis in NC/Nga mice. Int. Arch. Allergy Immunol. 168: 79-89. https://doi.org/10.1159/000441654
  12. Park Y, Kim D, Yang I, Choi B, Lee JW, Namkoong S, et al. 2018. Decursin and Z-ligustilide in Angelica tenuissima root extract fermented by Aspergillus oryzae display anti-pigment activity in melanoma cells. J. Mirobiol. Biotechnol. 28: 1061-1067.
  13. Liu H, Yue J, Lei Q, Gou X, Chen SY, He YY, et al. 2015. Ultraviolet B inhibits skin wound healing by affecting focal adhesion dynamics. Photochem. Photobiol. 91: 909-916. https://doi.org/10.1111/php.12462
  14. Cavinato M, Waltenberger B, Baraldo G, Grade CVC, Stuppner H, Jansen-Durr P. 2017. Plant extracts and natural compounds used against UVB-induced photoaging. Biogerontology 18: 499-516. https://doi.org/10.1007/s10522-017-9715-7
  15. Rittie L, Fisher GJ. 2015. Natural and sun-induced aging of human skin. Cold Spring Harbor Perspectives in Medicine. 5: a015370. https://doi.org/10.1101/cshperspect.a015370
  16. Park B, Hwang E, Seo SA, Cho JG, Yang JE, Yi TH. 2018. Eucalyptus globulus extract protects against UVB-induced photoaging by enhancing collagen synthesis via regulation of TGF-beta/Smad signals and attenuation of AP-1. Arch. Biochem. Biophys. 637: 31-39. https://doi.org/10.1016/j.abb.2017.11.007
  17. Morihara K, Tsuzuki H. 1978. Phosphoramidon as an inhibitor of elastase from Pseudomonas aeruginosa. Jap. J. Exp. Med. 48: 81-84.
  18. Athar M, An KP, Morel KD, Kim AL, Aszterbaum M, Longley J, et al. 2001. Ultraviolet B(UVB)-induced cox-2 expression in murine skin: an immunohistochemical study. Biochem. Biophys. Res. Commun. 280: 1042-1047. https://doi.org/10.1006/bbrc.2000.4201
  19. Shih R-H, Yang C-M. 2010. Induction of heme oxygenase-1 attenuates lipopolysaccharide-induced cyclooxygenase-2 expression in mouse brain endothelial cells. J. Neuroinflammation 7: 86. https://doi.org/10.1186/1742-2094-7-86
  20. Guo S, DiPietro LA. 2010. Factors affecting wound healing. J. Dental Res. 89: 219-229. https://doi.org/10.1177/0022034509359125
  21. Anitua E, Troya M, Orive G. 2012. Plasma rich in growth factors promote gingival tissue regeneration by stimulating fibroblast proliferation and migration and by blocking transforming growth factor-beta1-induced myodifferentiation. J. Periodontol. 83: 1028-1037. https://doi.org/10.1902/jop.2011.110505
  22. Semlali A, Chakir J, Goulet JP, Chmielewski W, Rouabhia M. 2011. Whole cigarette smoke promotes human gingival epithelial cell apoptosis and inhibits cell repair processes. J. Periodontal Res. 46: 533-541.
  23. Black AT, Gordon MK, Heck DE, Gallo MA, Laskin DL, Laskin JD. 2011. UVB light regulates expression of antioxidants and inflammatory mediators in human corneal epithelial cells. Biochem. Pharmacol. 81: 873-880. https://doi.org/10.1016/j.bcp.2011.01.014
  24. Rundhaug JE, Fischer SM. 2008. Cyclo-oxygenase-2 plays a critical role in UV-induced skin carcinogenesis. Photochem. Photobiol. 84: 322-329. https://doi.org/10.1111/j.1751-1097.2007.00261.x
  25. Kim HJ, Kim KW, Yu BP, Chung HY. 2000. The effect of age on cyclooxygenase-2 gene expression: NF-kappaB activation and IkappaBalpha degradation. Free Radic. Biol. Med. 28: 683-692. https://doi.org/10.1016/S0891-5849(99)00274-9
  26. Choi AM, Alam J. 1996. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am. J. Resp. Cell Mol. Biol. 15: 9-19. https://doi.org/10.1165/ajrcmb.15.1.8679227