DOI QR코드

DOI QR Code

Current Status of Microbial Phenylethanoid Biosynthesis

  • Kim, Song-Yi (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Song, Min Kyung (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Jeon, Ju Hyun (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Joong-Hoon (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2018.05.14
  • Accepted : 2018.05.30
  • Published : 2018.08.28

Abstract

Phenylethanoids, including 2-phenylethanol, tyrosol, and salidroside are a group of phenolic compounds with a C6-C2 carbon skeleton synthesized by plants. Phenylethanoids display a variety of biological activities, including antibacterial, anticancer, anti-inflammatory, neuroprotective, and anti-asthmatic activities. Recently, successful microbial synthesis of phenylethanoids through metabolic engineering and synthetic biology approaches has been reported and could allow phenylethanoid production from alternative microbial sources. Here, we review the recent achievements in the synthesis of phenylethanoids by microorganisms. The work done so far will contribute to the production of diverse phenylethanoids using various microbial systems and facilitate exploration of further diverse biological activities of phenylethanoids.

Keywords

References

  1. Vogt T. 2013. Phenylpropanoid biosynthesis. Mol. Plant. 3: 2-20.
  2. Vermerris W, Nicholson R. 2008. Families of phenolic compounds and means of classification. In Phenolic compound biochemistry, pp. 1-34, Springer.
  3. Kobayashi S, Makino A. 2009. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem. Rev. 109: 5288-5353. https://doi.org/10.1021/cr900165z
  4. Cheynier V. 2012. Phenolic compounds: from plants to foods. Phytochem. Rev. 11: 153-177. https://doi.org/10.1007/s11101-012-9242-8
  5. Hollman PCH. 2001. Evidence for health benefits of plant phenols: local or systemic effects? J. Sci. Food Agric. 81: 842-852. https://doi.org/10.1002/jsfa.900
  6. Kumar S, Pandey AK. 2013. Chemistry and biological activity of flavonoids: an overview. Sci. World J. 2013: 1627504.
  7. Cheynier V. 2012. Phenolic compounds: from plants to foods. Phytochem. Rev. 11: 153-177. https://doi.org/10.1007/s11101-012-9242-8
  8. Agrawal AD. 2011. Pharmacological activities of flavonoids: a review. Int. J. Pharm. Sci. Nanotech. 4: 1394-1398.
  9. Rimando AM, Suh N. 2008. Biological/chemopreventive activity of stilbenes and their effect on colon cancer. Planta Med. 74: 1635-1643. https://doi.org/10.1055/s-0028-1088301
  10. Fu G, Pang H, Wong YH 2008. Naturally occurring phenylethanoid glycosides: potential leads for new theraperutics. Cur. Med. Chem. 15: 2592-2613. https://doi.org/10.2174/092986708785908996
  11. Xue Z, Yang B. 2016. Phenylethanoid glycosides: research advances in their phytochemistry, pharmacological activity and pharmacokinetics. Molecules 21: 991. https://doi.org/10.3390/molecules21080991
  12. Cifani C, Micioni Di B MV, Vitale G, Ruggieri V, Ciccocioppo R, Massi M. 2010. Effect of salidroside, active principle of Rhodiolarosea extract, on binge eating. Physiol. Behav. 101: 555-562. https://doi.org/10.1016/j.physbeh.2010.09.006
  13. Viuda-Martos M, Ruiz-Navajas Y, Fernandez-Lopez J, Perez-Alvares JA. 2008. Functional properties of honey, propolis and royal jelly. J. Food Sci. 73: R117-124. https://doi.org/10.1111/j.1750-3841.2008.00966.x
  14. Piroddi M, Albini A, Fabiani R, Giovannelli L, Luceri C, Natella F, et al. 2017. Nutrigenomics of extra-virgin olive oil: a review. Biofactors 43: 17-41. https://doi.org/10.1002/biof.1318
  15. St-Laurent-Thibault C, Arseneault M, Longpre F, Ramassamy C. 2011. Tyrosol and hydroxytyrosol, two main components of olive oil, protect N2a cells against amyloid-${\beta}$-induced toxicity. Involvement of the NF-$\kappa$B signaling. Curr. AlzheimerRes. 8: 543-551. https://doi.org/10.2174/156720511796391845
  16. Ristagno G, Fumagalli F, Porretta-Serapiglia C, Orru A, Cassina C, Pesaresi M, et al. 2012. Hydroxytyrosolattenuates peripheral neuropathy in streptozotocin-induced diabetes in rats. J. Agric. Food Chem. 60: 5859-5865. https://doi.org/10.1021/jf2049323
  17. Tripoli E, Giammanoco M, Tabacchi G, Di Majo D, Giammano S, La Guardia M. 2005. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr. Res. Rev. 18: 98-112. https://doi.org/10.1079/NRR200495
  18. Vilaplana-Pérez C, Auñón D, García-Flores LA, Gil- Izquierdo A. 2014. Hydroxytyrosol and potential uses in cardiovascular diseases, cancer, and AIDS. Front. Nutr. 1: 18.
  19. Palumbo DR, Occhiuto F, Spadaro F, Circosta C. 2012. Rhodiolarosea extract protects human cortical neurons against glutamate and hydrogen peroxide-induced cell death through reduction in the accumulation of intracellular calcium. Phytother. Res. 26: 878-883. https://doi.org/10.1002/ptr.3662
  20. Zhang JK, Yang L, Meng GL, Yuan Z, Fan J, Li D, et al. 2013. Protection by salidroside against bone loss via inhibition of oxidative stress and bone-resorbing mediators. PLoS One 8: e57251. https://doi.org/10.1371/journal.pone.0057251
  21. Zhang H, Shen WS, Gao CH, Deng LC, Shen D. 2012. Protective effects of salidroside on epirubicin-induced early left ventricular regional systolic dysfunction in patients with breast cancer. Drugs R. D. 12: 101106.
  22. Huang M-T, Ma W, Yen P, Xie J-G, Han J, Frenkel K, et al. 1996. Inhibitory effects of caffeic acid phenethyl ester (CAPE) on12-0-tetradecanoylphorbol-13-acetate-induced tumor promotion inmouse skin and the synthesis of DNA, RNA and protein in HeLacells. Carcinogcnesis 17: 761-765. https://doi.org/10.1093/carcin/17.4.761
  23. Murtaza G, Karim S, Akram MR, Khan SA, Azhar S, Mumtaz A, et al. 2014. Caffeic acid phenethyl ester and therapeutic potentials. BioMed Res. Int. 2014: 145342.
  24. Boudreau LH, Maillet J, LeBlanc LM, Jean-François J, Touaibia M, Flamand N, et al. 2012. Caffeic acid phenethyl ester and its amide analogue are potent inhibitors of leukotriene biosynthesis in human polymorphonuclear leukocytes. PLoS One 7: e31833. https://doi.org/10.1371/journal.pone.0031833
  25. Son S, Lobkowsky EB, Lewis BA. 2001. Caffeic acid phenethyl ester (CAPE): synthesis and X-ray crystallographic analysis. Chem. Pharm. Bull. 49: 236-238. https://doi.org/10.1248/cpb.49.236
  26. Shi H, Xie D, Yang R, Cheng Y. 2014. Synthesis of caffeic acid phenethyl ester derivatives, and their cytoprotective and neuritogenic activities in PC12 cells. J. Agric. Food Chem. 62: 5046-5053. https://doi.org/10.1021/jf500464k
  27. Zhang P, Tang Y, Li N-G, Zhu Y,Duan J-A. 2014. Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives. Molecules 19: 16458-16476. https://doi.org/10.3390/molecules191016458
  28. Hua D, Xu P. 2011. Recent advances in biotechnological production of 2-phenylethanol. Biotechnol. Adv. 29: 654-660. https://doi.org/10.1016/j.biotechadv.2011.05.001
  29. Kim T-Y, Kee S-W, Oh M-K. 2014. Biosynthesis of 2- phenylethanol from glucose with genetically engineered Kluyveomycesmarxianus. Enzyme Microbial. Technol. 61-62: 44-47. https://doi.org/10.1016/j.enzmictec.2014.04.011
  30. Ma LQ, Gao DY, Wang YN, Wang HH, Zhang JX, Pang XB, et al. 2007. Molecular cloning and overexpression of a novel UDP-glucosyltransferase elevating salidroside levels in Rhodiolasachalinensis. Plant Cell Rep. 26: 989-999. https://doi.org/10.1007/s00299-007-0317-8
  31. Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, Weiss D, et al. 2006. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J. Biol. Chem. 281: 23357- 23366. https://doi.org/10.1074/jbc.M602708200
  32. Torrens-Spence M, Gillaspy G, Zhao B, Harich K, White RH, Li J. 2012. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme. Biochem. Biophys. Res. Commun. 418: 211-216. https://doi.org/10.1016/j.bbrc.2011.12.124
  33. Torrens-Spence M, Liu P, Ding H, Harich K, Gillaspy G, Li J. 2013. Biochemical evaluation of the decarboxylationdeamination activities of plant aromatic amino acid decarboxylase. J. Biol. Chem. 288: 2376-2387. https://doi.org/10.1074/jbc.M112.401752
  34. Lester G. 1965. Inhibition of growth, synthesis, and permeability in Neurospora crassa byphenethyl alcohol. J. Bacteriol. 90: 29-37.
  35. Huang C J, Lee SL, Chou CC. 2000. Production and molar yield of 2-phenylethanol by Pichia fermentans L-5 as affected by some medium components. J. Biosci. Bioeng. 90: 142-147. https://doi.org/10.1016/S1389-1723(00)80101-2
  36. Chung H Jr, Lee SL, Chou CC. 2000. Production and molar yield of 2-phenylethanol by Pichia fermentans L-5 as affected by some medium components. J. Biosci. Bioeng. 90: 142-147. https://doi.org/10.1016/S1389-1723(00)80101-2
  37. Kim B, Cho B-R, Hahn J-S. 2013. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol. Bioeng. 111: 115-124.
  38. Rodriguez A, Martnez JA, Flores N, Escalante A, Gosset G, Bolivar F. 2014. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb. Cell Fact. 13: 126.
  39. Ikeda M.2006. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl. Microbiol. Biotechnol. 69: 615-626. https://doi.org/10.1007/s00253-005-0252-y
  40. Lutke-Eversloh T, Stephanopoulos G. 2007.L-Tyrosine production by deregulated strains of Escherichia coli. Appl. Microbiol. Biotechnol. 75: 103-110. https://doi.org/10.1007/s00253-006-0792-9
  41. Sprenger GA. 2007. From scratch value; engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismite. Appl. Microbial. Biotechnol. 75: 1628-1634.
  42. Kang Z, Zhang C, Du G, Chen J. 2013. Metabolic engineering of Escherichia coli for production of 2-phenylethanol from renewable glucose. Appl. Biochem. Biotechnol. 172: 2012-2021.
  43. Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS. 2012. Engineering of L-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol. Met. Eng. 14: 603-610. https://doi.org/10.1016/j.ymben.2012.08.002
  44. Xue Y, Chen X, Yang C, Chang J, Shen W, Fan Y. 2017. Engineering Escherichia coli for enhanced tyrosol production. J. Agric. Food Chem. 65: 4708-4714. https://doi.org/10.1021/acs.jafc.7b01369
  45. Chung D, Kim SY, Ahn J-H. 2017. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli. Sci. Rep. 7: 2578. https://doi.org/10.1038/s41598-017-02042-2
  46. Bai Y, Bi H, Zhuang Y, Liu C, Cai T, Liu X, et al. 2014. Production of salidroside in metabolically engineered Escherichia coli. Sci. Rep. 4: 6640.
  47. Wei T, Cheng B-Y, Liua J-Z. 2016. Genome engineering Escherichia coli for L-DOPA overproduction from glucose. Sci. Rep. 6: 30080. https://doi.org/10.1038/srep30080
  48. Eudes A, Juminaga D, Baidoo EEK, Collins FW, Keasling JD, Loque D. 2013. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli. Microb. Cell Fact. 12: 62. https://doi.org/10.1186/1475-2859-12-62
  49. An DG, Cha MN, Nadarajan SP, Kim BG, Ahn J-H. 2016. Bacterial synthesis of four hydroxycinnamic acids. Appl. Biol. Chem. 59: 173-179.
  50. Choo HJ, Kim EJ, Kim SY, Lee Y, Kim B-G, Ahn J-H. 2018. Microbial synthesis of hydroxytyrosol and hydroxysalidroside. Appl. Bio. Chem. 61: 295-301. https://doi.org/10.1007/s13765-018-0360-x
  51. Yu HS, Ma LQ, Zhang JX, Shi GL, Hu YH, Wang YN.2011. Characterization of glycosyltransferases responsible for salidroside biosynthesis in Rhodiolasachalinensis. Phytochemistry 72: 862-870. https://doi.org/10.1016/j.phytochem.2011.03.020
  52. Fan B, Chen T, Zhang S, Wu B, He B. 2017. Mining of efficient microbial UDP-glycosyltransferases by motif evolution cross plant kingdom for application in biosynthesis of salidroside. Sci. Rep. 7: 463. https://doi.org/10.1038/s41598-017-00568-z
  53. Berner M, K rug D, B ihlmaier C, V ente A , Muller R , Bechthold A. 2006. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrixespanaensis. J. Bacteriol. 188: 2666-2673. https://doi.org/10.1128/JB.188.7.2666-2673.2006
  54. Jendresen CB, Stahlhut SG, Li M, Gaspar P, Siedler S, Förster J, et al. 2015. Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 81: 4458-4476. https://doi.org/10.1128/AEM.00405-15
  55. Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, et al. 2001. CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J. Biol. Chem. 276: 36566-36574. https://doi.org/10.1074/jbc.M104047200
  56. Widjaja A, Yeh T-H, Ju Y-H. 2008. Enzymatic synthesis of caffeic acid phenethyl ester. J. Chin. Inst. Chem. Eng. 39: 13-418. https://doi.org/10.1016/j.jcice.2007.11.010
  57. Wang J, Mahajani M, Jackson SL, Yang Y, Chen M, Ferreira EM, et al. 2017. Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides. Met. Eng. 44: 89-99. https://doi.org/10.1016/j.ymben.2017.09.011

Cited by

  1. Whole-Genome Sequence of Enterobacter sp. Strain MF024, Isolated from Soil in Shanghai, China vol.8, pp.37, 2018, https://doi.org/10.1128/mra.00650-19
  2. Recent Advances in Metabolically Engineered Microorganisms for the Production of Aromatic Chemicals Derived From Aromatic Amino Acids vol.8, pp.None, 2018, https://doi.org/10.3389/fbioe.2020.00407