DOI QR코드

DOI QR Code

Study on the determination methods of the natural radionuclides (238U, 232Th) in building materials and processed living products

실내 건축자재 및 생활 가공제품 중 천연방사성핵종(238U, 232Th)의 농도 평가를 위한 분석법 연구

  • Lee, Hyeon-Woo (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Lim, Jong-Myoung (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Lee, Hoon (Radiation Safety Division, Korea Foundation of Nuclear Safety) ;
  • Park, Ji-Young (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Jang, Mee (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Lee, Jin-Hong (Department of Environmental Engineering, Chung-Nam National University)
  • 이현우 (한국원자력연구원 원자력환경실) ;
  • 임종명 (한국원자력연구원 원자력환경실) ;
  • 이훈 (한국원자력안전재단 방사선안전부) ;
  • 박지영 (한국원자력연구원 원자력환경실) ;
  • 장미 (한국원자력연구원 원자력환경실) ;
  • 이진홍 (충남대학교 환경공학과)
  • Received : 2018.07.02
  • Accepted : 2018.08.10
  • Published : 2018.08.25

Abstract

A large number of functional living products are being produced for eco-friendly or health-promoting purposes. In the manufacturing process, such products could be adulterated with raw materials with high radioactivity, such as monazite and tourmaline. Thus, it is essential to manage raw materials and products closely related to the public living. For proper management, an accurate radioactivity data of the processed products are needed. Therefore, it is essential to develop a rapid and validated analytical method. In this study, the concentration of the radioactive $^{238}U$ and $^{232}Th$ in building materials (e.g., tile, cement, paint, wall paper, and gypsum board) and living products (e.g., health products, textiles, and minerals) were determined and compared by ED-XRF and ICP-MS. By comparing the results of both methods, we confirmed the applicability of the rapid screening and precise analysis of ED-XRF and ICP-MS. In addition, $^{238}U$ and $^{232}Th$ levels were relatively lower in building materials than in living products. Particularly, $^{232}Th$ content in 6 of 47 living products exceeded (maximum $8.2Bq{\cdot}g^{-1}$) the standard limit of $^{232}Th$ content in raw material ($1.0Bq{\cdot}g^{-1}$).

국내에서는 많은 수의 친환경 및 건강 증진을 목적으로 하는 기능성 생활제품이 생산되고 있으며 이러한 제품 제조 시 원료물질에 존재하는 모나자이트, 토르말린 등 방사능 농도가 높은 물질이 가공제품 내에 함께 유입 될 수 있어 원료물질과 함께 국민 생활과 밀접한 가공제품의 관리가 필수적이다. 이를 위해서 정확한 방사능 농도 분석 자료 및 유효성이 검증된 분석방법의 이용 및 개발이 필수적이다. 본 연구에서는 천연방사성 물질의 신속 스크리닝을 위한 ED-XRF 분석법과 정밀분석의 목적으로 ICP-MS를 이용하여 실내 건축자재 및 생활제품 내의 천연방사성핵종($^{238}U$, $^{232}Th$)의 농도를 정량분석하고 비교 및 평가하였다. 타일, 시멘트, 페인트, 벽지, 석고보드 등 총 47 종의 실내 건축자재와 건강제품, 섬유제품, 광물질 등 총 47 종의 생활 가공제품의 실제시료를 분석한 결과, ED-XRF 및 ICP-MS의 결과값은 전체적으로 1:1의 선형성을 보였으며 ED-XRF를 이용한 신속 스크리닝의 적용성과 ICP-MS를 이용한 정량분석법의 유효성을 확인하였다. 한편, 가공제품 중의 $^{238}U$, $^{232}Th$ 방사능 농도는 생활제품에 비해서 건축자재에서 상대적으로 매우 낮은 수준이었으며 특히 생활제품은 47 개 중 6 개의 제품이 원료물질의 관리기준치($1.0Bq{\cdot}g^{-1}$)를 초과(최대 $8.2Bq{\cdot}g^{-1}$)하는 것으로 평가되었다.

Keywords

References

  1. International Commission on Radiological Protection, 'The 2007 Recommendations of the International Commission on Radiological Protection', ICRP Publication 103, 2007.
  2. International Atomic Energy Agency, 'Extent of Environmental Contamination by naturally occurring radioactive material (NORM) and technological options for mitigation', Tech report 419, 2003.
  3. A. S. Paschoa, Appl. Radiat. Isot., 49, 189-196 (1998). https://doi.org/10.1016/S0969-8043(97)00239-X
  4. Nuclear Safty and Security Commission, No. 14115 (2017.03.30.), Republic of Korea.
  5. M. Mola, M. Palomo, A. Penalvear, C. Aguilar, and F. Borrull, J. Hazard. Mater., 198, 57-64 (2011). https://doi.org/10.1016/j.jhazmat.2011.10.011
  6. F. S. Al-Saleh and G. A. Al-Harshan, J. Environ. Radioact., 99, 1026-1031 (2008). https://doi.org/10.1016/j.jenvrad.2007.12.002
  7. Y. Y. Ji, K. H. Chung, J. M. Lim, C. J. Kim, M. Jang, M. J. Kang, and S. T. Park, Appl. Radiat. Isot., 97, 1-7 (2015). https://doi.org/10.1016/j.apradiso.2014.11.013
  8. A. Papadopoulos, G. Christofides, A. Koroneos, S. Stoulos, and C. Pa-pastefanou, Appl. Radiat. Isot., 75, 95-104 (2013). https://doi.org/10.1016/j.apradiso.2013.02.006
  9. H. Tuovinen, D. Vesterbacka, E. Pohjolainen, D. Read, D. Solatie, and J. Lehto, J. Geochem. Explora., 148, 174-180 (2015). https://doi.org/10.1016/j.gexplo.2014.09.004
  10. J. L. Mas, M. Villa, H. Hurtado, and R. Garcia-Tenorio, J. Hazard. Mater., 205-206, 198-207 (2012). https://doi.org/10.1016/j.jhazmat.2011.12.058
  11. Y. S. Kim, J. Kor. Soc. Cloth. Ind., 12(2), 240-245 (2010). https://doi.org/10.5805/KSCI.2010.12.2.240
  12. United States Nuclear Regulatory Commission, http://public-blog.nrc-gateway.gov/2014/07/28/negative-iontechnology-what-you-should-know, Assessed 28 July 2014.
  13. Korea Foundation Of Nuclear Safety, 'Anion-Radioactivity Correlation Analysis Result', 2017.
  14. Ministry of Education, Culture, Sports, Science and Technology (MEXT), 'Guideline for Ensuring Safty of Raw Materials and Products Containing Uranium or Thorium', 2009.
  15. European Commission, Radiation protection 112, 'Radiological Protection Principles concerning the Natural Radioactivity of Building Materials', 1999.
  16. J. Niu, P. E. Rasmussen, A. Wheeler, R. Williams, and M. Chenier, J. Atmos. Environ., 44, 1026-1031 (2010).
  17. J. Y. Park, J. M. Lim, Y. Y. Ji, C. S. Lim, B. U. Jang, K. H. Chung, W. N. Lee, and M. J. Kang, J. Radiat. Prot. Res., 41(4), 359-367 (2017). https://doi.org/10.14407/jrpr.2016.41.4.359
  18. T. Trojek and T. Cechak, Radiat. Prot. Dosimetry., 164, 529-532 (2015). https://doi.org/10.1093/rpd/ncv321
  19. I. Croudace, P. Warwick, R. Taylor, and S. Dee, Anal. Chim. Acta., 371, 217-225 (1998). https://doi.org/10.1016/S0003-2670(98)00353-5
  20. J. K. Haken, Ind. Eng. Chem. Prod. Res., 25, 163-171 (1986). https://doi.org/10.1021/i300022a008
  21. H. E. Carter, P. Warwick, J. Cobbb, and G. Longworth, Analyst., 124, 271-274 (1999). https://doi.org/10.1039/a809781j
  22. N. M. Hassan, T. Ishikawa, M. Hosoda, A. Sorimachi, S. Tokonami, Ma. Fukushi, and S. K. Sahoo, J. Radioanal. Nucl. Chem., 283, 15-21 (2009).
  23. J. M. Lim, H. Lee, C. J. Kim, M. Jang, J. Y. Park, and K. H. Chung, J. Anal. Sci. Technol., 30(5), 252-261 (2017).
  24. C. J. Brookes, I. G. Betteley, and S. M. Loxton, 'Fundamentals of Mathematics and Statistics, Wiley, 1979.
  25. M. Seferinoglu, A. Dirican, P. E. Erden, and D. Ericin, Appl. Radiat. Isot., 94, 355-362 (2014). https://doi.org/10.1016/j.apradiso.2014.09.002
  26. J. Mantero, M. Lehritane, S. Hurtado, and R. Garcia-Tenorio, J. Radioanal. Nucl. Chem., 286, 557-563 (2010). https://doi.org/10.1007/s10967-010-0782-3
  27. J. L. Todoli and J. M. Mermet, 'Liquid Sample Introduction in ICP Spectrometry A Practical Guide', 1st Ed., Elsevier, 2008.
  28. W. Schroeyers, Z. Sas, G. Bator, R. Trevisi, C. Nuccetelli, F. Leonardi, S. Schreurs, and T. Kovacs, J. Construc. Build. Materials., 159, 755-767 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.037
  29. N. Ibrahim, J. Environ. Radioact., 43, 255-258 (1999). https://doi.org/10.1016/S0265-931X(98)00033-2
  30. Y. H. Cho, C. J. Kim, J. Y. Yun, D. H. Cho, and K. P. Kim, J. Radiat. Prot., 3, 181-190 (2012).
  31. M. Lust and E. Realo, Proceedings. Estonian. Academy. Sci., 61(2), 107-112 (2012). https://doi.org/10.3176/proc.2012.2.03