DOI QR코드

DOI QR Code

A New Salt-Tolerant Thermostable Cellulase from a Marine Bacillus sp. Strain

  • dos Santos, Yago Queiroz (Laboratorio de Quimica e Funcao de Proteinas Bioativas, Universidade Federal do Rio Grande do Norte) ;
  • de Veras, Bruno Oliveira (Departamento de Biologia Celular e Molecular, Universidade Federal da Paraiba) ;
  • de Franca, Anderson Felipe Jacome (Laboratorio de Quimica e Funcao de Proteinas Bioativas, Universidade Federal do Rio Grande do Norte) ;
  • Gorlach-Lira, Krystyna (Departamento de Biologia Celular e Molecular, Universidade Federal da Paraiba) ;
  • Velasques, Jannaina (Centro de Formacao em Ciencias e Tecnologias Agroflorestais, Universidade Federal do Sul da Bahia) ;
  • Migliolo, Ludovico (Laboratorio de Quimica e Funcao de Proteinas Bioativas, Universidade Federal do Rio Grande do Norte) ;
  • dos Santos, Elizeu Antunes (Laboratorio de Quimica e Funcao de Proteinas Bioativas, Universidade Federal do Rio Grande do Norte)
  • Received : 2018.02.23
  • Accepted : 2018.04.26
  • Published : 2018.07.28

Abstract

A salt-tolerant cellulase secreted by a marine Bacillus sp. SR22 strain with wide resistance to temperature and pH was purified and characterized. Its approximate mass was 37 kDa. The endoglucanase, named as Bc22Cel, was purified by ammonium sulfate precipitation, gel filtration chromatography, and extraction from the gel after non-reducing sodium dodecyl sufate-polyacrylamide gel electrophoresis. The optimal pH value and temperature of Bc22Cel were 6.5 and $60^{\circ}C$, respectively. The purified Bc22Cel showed a considerable halophilic property, being able to maintain more than 70% of residual activity even when pre-incubated with 1.5 M NaCl for 1 h. Kinetic analysis of the purified enzyme showed the $K_m$ and $V_{max}$ to be 0.704 mg/ml and $29.85{\mu}mol{\cdot}ml^{-1}{\cdot}min^{-1}$, respectively. Taken together, the present data indicate Bc22Cel as a potential and useful candidate for industrial applications, such as the bioconversion of sugarcane bagasse to its derivatives.

Keywords

References

  1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, et al. 2006. The path forward for biofuels and biomaterials. Science 311: 484-489. https://doi.org/10.1126/science.1114736
  2. Jia L, Gonçalves G, Takasugi Y, Mori Y, Noda S, Tanaka T, et al. 2015. Effect of pretreatment methods on the synergism of cellulase and xylanase during the hydrolysis of bagasse. Bioresour. Technol. 185.
  3. Dantur KI, Enrique R, Welin B, Castagnaro AP. 2015. Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Exp. 5: 15. https://doi.org/10.1186/s13568-015-0101-z
  4. Yin L-J, Lin H-H, Xiao Z-R. 2010. Purification and characterization of a cellulase from Bacillus subtilis. J. Mar. Sci. Technol. 18: 466-471.
  5. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Bioresour. Technol. 66: 506-577.
  6. Rastogia G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, et al. 2010. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour. Technol. 101: 8798-8806. https://doi.org/10.1016/j.biortech.2010.06.001
  7. Sun Y, Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  8. An T, Dong Z, Lv J, Liu Y , Wang M , Wei S, et al. 2015. Purification and characterization of a salt-tolerant cellulase from the mangrove oyster, Crassostrea rivularis. Acta Biochim. Biophys. Sin. (Shanghai) 47: 299-305. https://doi.org/10.1093/abbs/gmv015
  9. Gaur R, Tiwari S. 2015. Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol. 15: 19. https://doi.org/10.1186/s12896-015-0129-9
  10. Saratale GD, Saratale RG. 2012. Production and characterization of multiple cellulolytic enzymes by isolated Streptomyces sp. MDS. Biomass Bioenergy 47: 302-315. https://doi.org/10.1016/j.biombioe.2012.09.030
  11. Kasana RC, S alwan R, D har H, Dutt S, Gulati A. 2008 . A rapid and easy method for the detection of microbial cellulases on agar plates using Gram's iodine. Curr. Microbiol. 57: 503-507. https://doi.org/10.1007/s00284-008-9276-8
  12. Hogg JC, Lehane MJ. 1999. Identification of bacterial species associated with the sheep scab mite (Psoroptes ovis) by using amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 65: 4227-4229. https://doi.org/10.1128/AEM.65.9.4227-4229.1999
  13. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  14. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  15. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  16. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  17. Blum H, Beier H, Gross HJ. 1987. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8: 93-99. https://doi.org/10.1002/elps.1150080203
  18. Singh S, Moholkar VS, Goyal A. 2013. Isolation, identification, and characterization of a cellulolytic Bacillus amyloliquefaciens strain SS35 from rhinoceros dung. ISRN Microbiol. 2013: 728134.
  19. Rawat R, Tewari L. 2012. Purification and characterization of an acidothermophilic cellulase enzyme produced by Bacillus subtilis strain LFS3. Extremophiles 16: 637-644. https://doi.org/10.1007/s00792-012-0463-y
  20. Sadhu S, Saha P, Sen SK, Mayilraj S, Maiti TK. 2013. Production, purification and characterization of a novel thermotolerant endoglucanase (CMCase) from Bacillus strain isolated from cow dung. Springerplus 2: 10. https://doi.org/10.1186/2193-1801-2-10
  21. Lee B-H, Kim B-K, Lee Y-J, Chung C-H, Lee J-W. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 46: 38-42. https://doi.org/10.1016/j.enzmictec.2009.07.009
  22. Bischoff KM, Rooney AP, Li X-L, Liu S, Hughes SR. 2006. Purification and characterization of a family 5 endoglucanase from a moderately thermophilic strain of Bacillus licheniformis. Biotechnol. Lett. 28: 1761-1765. https://doi.org/10.1007/s10529-006-9153-0
  23. Bakare MK, Adewale IO, Ajayi A, Shonukan OO. 2005. Purification and characterization of cellulase from the wildtype and two improved mutants of Pseudomonas fluorescens. Afr. J. Biotechnol. 4: 898-904.
  24. Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: the other $CO_2$ problem. Annu. Rev. Mar. Sci. 1: 169-192. https://doi.org/10.1146/annurev.marine.010908.163834
  25. Parker LM, Scanes E, O'Connor WA, Coleman RA, Byrnea M, Portner HO, et al. 2017. Ocean acidification narrows the acute thermal and salinity tolerance of the Sydney rock oyster Saccostrea glomerata. Mar. Pollut. Bull. 122: 263-271. https://doi.org/10.1016/j.marpolbul.2017.06.052
  26. Ko C-H, Chen W-L, Tsai C-H, Jane W-N, Liu C-C, Tu J. 2007. Paenibacillus campinasensis BL11: a wood materialutilizing bacterial strain isolated from black liquor. Bioresour. Technol. 98: 2727-2733. https://doi.org/10.1016/j.biortech.2006.09.034
  27. Pason P, Kyu KL, Ratanakhanokchai K. 2006. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol. 72: 2483-2490. https://doi.org/10.1128/AEM.72.4.2483-2490.2006
  28. Lee Y-J, Kim B-K, Lee B-H, Jo K-I, Lee N-K, Chung C-H, et al. 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99: 378-386. https://doi.org/10.1016/j.biortech.2006.12.013
  29. Trivedi N, Gupta V, Kumar M, Kumari P, Reddy CRK, Jha B. 2011. An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohydr. Polym. 83: 891-897. https://doi.org/10.1016/j.carbpol.2010.08.069
  30. Raddadi N, Cherif A, Daffonchio D, Fava F. 2013. Haloalkalitolerant and thermostable cellulases with improved tolerance to ionic liquids and organic solvents from Paenibacillus tarimensis isolated from the Chott El Fejej, Sahara desert, Tunisia. Bioresour. Technol. 150: 121-128. https://doi.org/10.1016/j.biortech.2013.09.089
  31. Sims REH, Mabee W, Saddler JN, Taylor M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101: 1570-1580. https://doi.org/10.1016/j.biortech.2009.11.046

Cited by

  1. Molecular Characterization of an Endo-β-1,4-Glucanase, CelAJ93, from the Recently Isolated Marine Bacterium, Cellulophaga sp. J9-3 vol.9, pp.19, 2018, https://doi.org/10.3390/app9194061
  2. Deep Hypersaline Anoxic Basins as Untapped Reservoir of Polyextremophilic Prokaryotes of Biotechnological Interest vol.18, pp.2, 2018, https://doi.org/10.3390/md18020091
  3. 셀룰로스분해 신규 해양미생물 Seonamhaeicola sp. S2-3의 분리 및 동정 vol.48, pp.4, 2018, https://doi.org/10.48022/mbl.2009.09007
  4. Bacillus amyloliquefaciens 35 M can exclusively produce and secrete proteases when cultured in soybean-meal-based medium vol.209, pp.p2, 2018, https://doi.org/10.1016/j.colsurfb.2021.112188