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Abstract 
 

As a unique form of signed-digit representation, non-adjacent form (NAF) minimizes 
Hamming weight by removing a stream of non-zero bits from the binary representation of 
positive integer. Thanks to this strong point, NAF has been used in various applications such 
as cryptography, packet filtering and so on. In this paper, to improve the NAF conversion 
speed of the 𝑁𝑁𝑁𝑁𝑁𝑁𝑤𝑤 algorithm, we propose a new NAF conversion algorithm, called 𝑤𝑤-bit 
Shifting Non-Adjacent Form(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑤𝑤), where 𝑤𝑤 is width of scanning window. By skipping 
some unnecessary bit comparisons, the proposed algorithm improves the NAF conversion 
speed of the 𝑁𝑁𝑁𝑁𝑁𝑁𝑤𝑤 algorithm. To verify the excellence of the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑤𝑤 algorithm, the 𝑁𝑁𝑁𝑁𝑁𝑁𝑤𝑤 
algorithm and the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑤𝑤 algorithm are implemented in the 8-bit microprocessor ATmega128. 
By measuring CPU cycle counter for the NAF conversion under various input patterns, we 
show that the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 algorithm not only increases the NAF conversion speed by 24% on 
average but also reduces deviation in the NAF conversion time for each input pattern by 36%, 
compared to the 𝑁𝑁𝑁𝑁𝑁𝑁2 algorithm. In addition, we show that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑤𝑤 algorithm is always faster 
than 𝑁𝑁𝑁𝑁𝑁𝑁𝑤𝑤 algorithm, regardless of the size of 𝑤𝑤. 
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1. Introduction 

In mathematical notation of numbers, signed-digit representation means a positional system 
for a signed digit. Since signed-digit representation can remove dependency on carry 
propagation, it is widely used for the fast addition of integers. 

One integer can have various signed-digit representations. For example, the positive integer 
of 15 has five types of signed-digit representations as below. Here, 1� means −1. 

(01111)2 = 8 + 4 + 2 + 1 

(11�111)2 = 16 − 8 + 4 + 2 + 1 

(101�11)2 = 16 − 4 + 2 + 1 

(1001�1)2 = 16 − 2 + 1 

(10001�)2 = 16 − 1 

Integer encoding methods for signed-digit representation, which remove a stream of 
non-zero bits, include Booth encoding [1], a Fibonacci encoding [2] and Non-Adjacent Form 
(NAF). Compared to the other encoding methods, NAF has been used in diverse applications 
such as public key cryptography [3-6], packet filtering [7-8], constructing a ternary FCSRs 
[9-10] and analysis for medical predictive models [11]. In particular, NAF has been actively 
used in some exponentiation-based public-key cryptographic algorithms including RSA [12] 
and Elliptic Curve Cryptography (ECC) [13-14]. 

Non-adjacent form (NAF) is a particular form of signed-digit representation, which is used 
in the binary numeral system [15-17]. As a unique signed binary representation, NAF of a 
positive integer 𝑘𝑘 is generally expressed into equation (1) below: 

 

NAF(𝑘𝑘) = ∑ 𝑘𝑘𝑖𝑖2𝑖𝑖𝑚𝑚
𝑖𝑖=0  , where 𝑘𝑘𝑖𝑖 ∈ {−1, 0, 1},𝑘𝑘𝑚𝑚 ≠ 0                            (1) 

 
Table 1. Terms and Notation 

Term Notation 

𝑘𝑘 positive integer 

𝑘𝑘(2) binary representation of 𝑘𝑘 

𝑙𝑙 length of 𝑘𝑘(2) 

𝑤𝑤 width of scanning window for bit stream search, where 𝑤𝑤 ≥ 2 

𝑚𝑚 length of NAF, where 𝑙𝑙 − 𝑤𝑤 + 2 ≤ 𝑚𝑚 ≤ 𝑙𝑙 + 1 

𝑘𝑘𝑖𝑖  or 𝑢𝑢𝑖𝑖 a nonzero coefficient, where |𝑘𝑘𝑖𝑖|, |𝑢𝑢𝑖𝑖| < 2𝑤𝑤−1 and 0 ≤ 𝑖𝑖 ≤ 𝑚𝑚 

NAF𝑤𝑤(𝑘𝑘) NAF of 𝑘𝑘(2), i.e., (𝑘𝑘𝑚𝑚, 𝑘𝑘𝑚𝑚−1, . . . , 𝑘𝑘1, 𝑘𝑘0) 

𝑥𝑥 decimal value of the rightmost 𝑤𝑤 bits 
 

As a method for integer encoding that minimizes Hamming weight, NAF removes a stream 
of non-zero bits from the binary representation of an integer. For example, in the case of the 
aforementioned signed-digit representation of positive integer 15, NAF is (10001�)2  with 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                                            3457 
 

𝑘𝑘𝑖𝑖 ∙ 𝑘𝑘𝑖𝑖+1 = 0 and the minimum Hamming weight. On average, binary representation of 𝑘𝑘 in 
the length of 𝑙𝑙 consists of non-zero bits that account for half of the total number of bits. On the 
other hand, NAF reduces the number of non-zero bits to (𝑙𝑙/3)  on average in binary 
representation that has the same length. In Table 1, we summarize terms and their notation 
used in this paper. 

As the NAF𝑤𝑤  algorithm [18-19] is most commonly used for NAF conversion in many 
application fields, it is denoted into the canonical NAF conversion algorithm. By removing a 
stream of non-zero bits from 𝑘𝑘(2) , the NAF𝑤𝑤  algorithm returns NAF𝑤𝑤(𝑘𝑘), which has the 
minimum Hamming weight. Specifically, the Hamming weight of NAF𝑤𝑤(𝑘𝑘) in the length of 
𝑚𝑚 is 𝑚𝑚/(𝑤𝑤 + 1). Also 𝑘𝑘𝑖𝑖 of NAF(𝑘𝑘) described in equation (1) can only be {-1, 0, 1}. On the 
other hand, 𝑘𝑘𝑖𝑖 of NAF𝑤𝑤(𝑘𝑘) can be any odd integer satisfying |𝑘𝑘𝑖𝑖| < 2𝑤𝑤−1. For example, when 
𝑤𝑤 is 3, 𝑘𝑘𝑖𝑖 value has one of {-3, -1, 0, 1, 3}. NAF𝑤𝑤(𝑘𝑘) in the length of 𝑚𝑚 is expressed into 
equation (2) below: 

 

NAF𝑤𝑤(𝑘𝑘) = ∑ 𝑘𝑘𝑖𝑖2𝑖𝑖𝑚𝑚
𝑖𝑖=0 , where |𝑘𝑘𝑖𝑖| < 2𝑤𝑤−1 ,𝑤𝑤 ≥ 2 ,𝑘𝑘𝑚𝑚 ≠ 0.                   (2) 

 
Algorithm 1. NAF𝑤𝑤 algorithm 

Input : 𝑘𝑘,𝑤𝑤 (𝑤𝑤 ≥ 2) 
Output : NAF𝑤𝑤(𝑘𝑘) =  𝑘𝑘𝑚𝑚, 𝑘𝑘𝑚𝑚−1, . . . , 𝑘𝑘1, 𝑘𝑘0 

1 : 𝑖𝑖 ← 0 
2 : while 𝑘𝑘 ≥ 1 do 
3 :  if 𝑘𝑘 is odd then 
4 :   𝑘𝑘𝑖𝑖 ← 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 2𝑤𝑤 
5 :   if 𝑘𝑘𝑖𝑖 ≥ 2𝑤𝑤−1 then 
6 :    𝑘𝑘𝑖𝑖 ← 𝑘𝑘𝑖𝑖 − 2𝑤𝑤 
7 :   end if 
8 :   𝑘𝑘 ← 𝑘𝑘 − 𝑘𝑘𝑖𝑖 
9 :  else 

10 :   𝑘𝑘𝑖𝑖 ← 0 
11 :  end if 
12 :  𝑘𝑘 ← 𝑘𝑘/2 , 𝑖𝑖 ← 𝑖𝑖 + 1 
13 : end while 
14 : Return (𝑘𝑘𝑚𝑚, 𝑘𝑘𝑚𝑚−1, . . . , 𝑘𝑘1, 𝑘𝑘0) 

 
In Algorithm 1, we describe a pseudocode for implementing the NAF𝑤𝑤 algorithm. If the 

value of least significant bit (LSB) in 𝑘𝑘 is 0, 𝑘𝑘𝑖𝑖 is simply set into 0 in line 10. Otherwise, the 
rightmost 𝑤𝑤 bits in 𝑘𝑘 are set into 𝑘𝑘𝑖𝑖 in line 4. However, 𝑘𝑘𝑖𝑖 should be expressed into the signed 
digit representation with the minimum Hamming weight. Thus, if 𝑘𝑘𝑖𝑖 is greater than or equal to 
2𝑤𝑤−1, 𝑘𝑘𝑖𝑖 is set into a negative coefficient 𝑘𝑘𝑖𝑖 − 2𝑤𝑤 in line 6 and then, 𝑘𝑘 is set into 𝑘𝑘 − 𝑘𝑘𝑖𝑖 in 
line 8. We denote the operations in lines 3 to 12 into comparison-and-shift encoding. Also we 
denote the operation in line 2 into bit comparison for conditional NAF conversion. If the 
length of 𝑘𝑘(2)  in NAF𝑤𝑤  algorithm is 𝑙𝑙 , 𝑙𝑙  numbers of comparison-and-shift encoding are 
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required and 𝑙𝑙 numbers of bit comparison for conditional NAF conversion are required. 
In this paper, to convert 𝑘𝑘 into NAF𝑤𝑤(𝑘𝑘) faster than the NAF𝑤𝑤 algorithm, we propose a new 

NAF conversion algorithm, called the w-bit Shifting Non-Adjacent Form (SNAF𝑤𝑤) algorithm. 
When converting 𝑘𝑘  into NAF𝑤𝑤(𝑘𝑘) , where the length of 𝑘𝑘(2)  is 𝑙𝑙 , the NAF𝑤𝑤  algorithm 
respectively requires 𝑙𝑙  numbers of bit comparison for conditional NAF conversion and 
comparison-and-shift encoding. Compared to the NAF𝑤𝑤 algorithm, since 𝑘𝑘(2) consists of 𝑙𝑙/2 
non-zero bits in probability, the SNAF𝑤𝑤 algorithm checks whether the NAF conversion of 𝑘𝑘(2) 
is completed only when the rightmost 𝑤𝑤 bits in 𝑘𝑘(2) is less than 2𝑤𝑤−1. Therefore, the SNAF𝑤𝑤 
algorithm requires 𝑙𝑙/2(w + 1) numbers of bit comparisons on average to check whether the 
NAF conversion is completed. That is, the SNAF𝑤𝑤  algorithm reduces the number of bit 
comparisons for conditional NAF conversion. 

Also, when computing 𝑘𝑘𝑖𝑖 with the minimum Hamming weight, the NAF𝑤𝑤 algorithm sets 
the rightmost w bits into 0s in line 8 and then, shifts 𝑘𝑘(2) by one bit to the right side in line 12 
and compare whether the bit value is 0. The comparison-and-shift encoding is repeated for the 
remaining 𝑤𝑤 − 2 bits within w-width scanning window. Compared to the NAF𝑤𝑤(𝑘𝑘) algorithm, 
the SNAF𝑤𝑤 algorithm shifts 𝑘𝑘(2) by w bits to the right side without setting the w bits in the 
w-width scanning window into 0s. That is, by skipping comparison-and-shift encoding for the 
leftmost 𝑤𝑤 − 1 bits in the w-width scanning window, the SNAF𝑤𝑤algorithm requires 2𝑙𝑙/(𝑤𝑤 +
1) numbers of comparison-and-shift encoding on average. As a result, the SNAF𝑤𝑤 algorithm 
converts k into NAF faster than the NAF𝑤𝑤  algorithm by reducing the number of bit 
comparisons for conditional NAF conversion and comparison-and-shift encoding. The 
SNAF𝑤𝑤 algorithm also shows the faster conversion speed than the other well-known NAF 
conversion algorithms [20-24]. 

 

 
Fig. 1. NAF conversion examples using (a) 𝐍𝐍𝐍𝐍𝐍𝐍𝒘𝒘 and (b) 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒘𝒘 
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In Fig. 1, let us consider an example that shows how the NAF3 algorithm and the SNAF3 

algorithm convert a positive odd integer k(=35) into NAF3(35) respectively. We assume 
𝑘𝑘(2) = (100011)2. In Fig. 1(a), since the value of the rightmost 3 bits, marked into the grey 
color, is odd and less than 22, the NAF3 algorithm sets 𝑘𝑘0 into 3 and then, the rightmost 3 bits 
into 0. After shifting 𝑘𝑘(2) by one bit to the right side, 𝑘𝑘 is not odd. Thus, the NAF3 algorithm 
shifts 𝑘𝑘(2) by one bit to the right side repeatedly and thus, 𝑘𝑘1, 𝑘𝑘2 and 𝑘𝑘3 are computed into 0. 
In this example, while computing 𝑘𝑘0 to 𝑘𝑘3, the NAF3 algorithm requires one memory access 
for setting 3 bits into 0s and three numbers of comparison-and-shift encodings. On the other 
hand, as shown in Fig. 1(b), the SNAF3 algorithm shifts 𝑘𝑘(2) by 3 bits to the right side without 
setting the rightmost 3 bits into 0s.  

The SNAF3 algorithm also computes 𝑘𝑘0 to 𝑘𝑘3 by only one comparison-and-shift encoding. 
That is, in the example of Fig. 1, the NAF3 algorithm respectively requires 4 numbers of bit 
comparison for conditional NAF conversion and comparison-and-shift encoding. On the other 
hand, SNAF3 algorithm respectively requires 2 numbers of bit comparison for conditional 
NAF conversion and comparison-and-shift encoding. Thus, the SNAF3 algorithm converts 
(100011)2 into NAF much faster than the NAF3 algorithm. In section 3, we show how the 
SNAF𝑤𝑤 algorithm operates in details. 

Contributions of this paper can be summarized as follows. First, we propose a new NAF 
conversion algorithm that improves the speed of NAF conversion regardless of the 
performance of microprocessors. Second, we show theoretical analysis results that explain 
why the computational speed of the proposed algorithm is faster than the other NAF 
conversion algorithms. Third, from the experimental results in the 8-bit microprocessor 
ATmega128, we show that compared to the NAF𝑤𝑤 algorithm, the SNAF𝑤𝑤 algorithm increases 
the speed of NAF conversion by 20% on average and 25% at the maximum. 

This paper consists of as follows. Section 2 overview the characteristics of the recently 
proposed NAF conversion algorithms. In section 3, we describe the SNAF𝑤𝑤  algorithm in 
details. In section 4, we show the evaluation results of the proposed algorithm. Finally, we 
summarize this paper in section 5. 

2. Related Work 
In this section, we overview the well-known NAF conversion algorithms, which improve 

the NAF𝑤𝑤 algorithm in terms of memory efficiency and the NAF conversion speed in scalar 
multiplication and so on. 

2.1 FAN 
FAN algorithm is proposed to reduce memory usage of the NAF𝑤𝑤  algorithm [21]. 

Specifically, since the NAF𝑤𝑤 algorithm converts 𝑘𝑘(2) into NAF by checking every bit in the 
right-to-left direction, called the right-to-left encoding. In the NAF𝑤𝑤 algorithm, the converted 
NAF values are buffered in memory until scalar multiplication or modular exponentiation is 
completed. That is, the additional memory is required because the buffer with the NAF values 
cannot be reused until completing scalar multiplication or modular exponentiation. 

When implementing scalar multiplication or modular exponentiation in devices such as 
smart cards, the size of memory is an important issue. This is because the embedded system 
has a low memory resource. To resolve the aftermentioned unnecessary memory usage, the 
FAN algorithm is designed to check every bit in the left-to-right direction, called the 
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left-to-right encoding. This is because in general, scalar multiplication and modular 
exponentiation are conducted in the left-to-right direction. By checking each bit in the 
left-to-right direction, the buffer for storing a single NAF, i.e., 𝑘𝑘𝑖𝑖, value can be reused. 

2.2 Compact Encoding NAF 
To convert 𝑘𝑘(2) in the length 𝑙𝑙 into the NAF for w=2, two bits for expressing each 𝑘𝑘𝑖𝑖 are 

used to represent “−” sign for encoding. Thus, to store the NAF values converted from 𝑘𝑘(2) in 
the length of 𝑙𝑙, 2(𝑙𝑙 + 1) bits are required. In order to reduce the required memory size, the 
compact encoding NAF algorithm was proposed [22]. 

The compact encoding NAF is a simple right-to-left encoding method based on the 
characteristics of (𝑘𝑘𝑖𝑖 ∙ 𝑘𝑘𝑖𝑖+1 = 0) that “1” or “−1” of NAF is always adjacent to “0”. 

 

𝑅𝑅 = �
01 → 01
01� → 11

0 → 0
         𝑅𝑅−1 = �

01 → 01
11 → 01�

0 → 0
                                             (3) 

 
As 𝑅𝑅 conversion rules in equation (3) are used, the NAF of positive integer is encoded in 

binary representation without the bit of “−1”. For example, (10001�)2, which is the NAF of 
positive integer 15, is changed to (10011)2. On the contrary, 𝑅𝑅−1 conversion rules can be 
used also for conversion from compact encoding NAF to NAF. 

 
Algorithm 2. MOF𝑤𝑤 : Left-to-Right Encoding for 𝑤𝑤 = 2 
Input : a non-zero n-bit binary string, 𝑑𝑑 =  𝑑𝑑𝑛𝑛−1|𝑑𝑑𝑛𝑛−2| … |𝑑𝑑1|𝑑𝑑0 

Output : 𝑢𝑢𝑛𝑛|𝑢𝑢𝑛𝑛−1| … |𝑢𝑢1|𝑢𝑢0 of 𝑑𝑑 
1 : 𝑢𝑢𝑛𝑛 ← 𝑑𝑑𝑛𝑛−1 
2 : for 𝑖𝑖 from 𝑛𝑛 − 1 down to 1 do 
3 :  𝑢𝑢𝑖𝑖 ← 𝑑𝑑𝑖𝑖−1 − 𝑑𝑑𝑖𝑖 
4 : end for 
5 : 𝑢𝑢0 ← −𝑑𝑑0 
6 : Return (𝑢𝑢𝑛𝑛 ,𝑢𝑢𝑛𝑛−1, … ,𝑢𝑢1,𝑢𝑢0) 

2.3 Mutual Opposite Form 
The Mutual Opposite Form (MOF𝑤𝑤) algorithm [23] is designed to convert 𝑘𝑘(2) into NAF 

using the right-to-left encoding. Also, by using the right-to-left encoding, the MOF𝑤𝑤 algorithm 
converts 𝑘𝑘(2) into MOF, which is a signed binary representation with the same Hamming 
weight as NAF. By following the below conditions, 𝑛𝑛-bit 𝑘𝑘(2)  is expressed into (𝑛𝑛 + 1) 
numbers of MOFs, i.e., 𝑢𝑢𝑖𝑖. 

1. Sign values of adjacent non-zero bits are opposite to each other. 
2. If all bits are not 0s, the most significant bit (MSB) and LSB are 1 and 1� respectively. 
By converting 𝑘𝑘(2) into NAF using the left-to-right encoding, the MOF𝑤𝑤  algorithm can 

reduce memory space, which is required to store the NAF conversion value, by much as 𝑛𝑛 bits. 
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In Algorithm 2, we show the detailed operation of the MOF𝑤𝑤 algorithm using the left-to-right 
encoding for 𝑤𝑤 = 2. 

2.4 Complementary Canonical Sliding Window Recoding 
The CCS(Complementary Canonical Sliding window) recoding algorithm expresses NAF 

into an extension of complement expressions [24]. The CCS recoding algorithm converts 𝑘𝑘(2) 
into NAF by consecutively using the method of calculating 1's complement, the NAF𝑤𝑤 
algorithm and a sliding window method. In the elliptic curve cryptosystem, the CCS 
representation can be applied to reduce the average number of the point addition operation in 
scalar multiplication. 

When being used for scalar multiplication in ECC, the FAN algorithm, the compact 
encoding NAF algorithm and the MOF𝑤𝑤 algorithm are implemented by using less memory 
than the NAF𝑤𝑤 algorithm. However, the NAF conversion speed of the FAN algorithm and the 
compact encoding NAF algorithm is much slower than the NAF𝑤𝑤 algorithm due to many 
numbers of memory accesses. Also, the FAN algorithm and the compact encoding NAF 
algorithm can be used only when 𝑤𝑤 = 2. In the MOF𝑤𝑤 algorithm, if 𝑤𝑤 is larger than two, 
many numbers of memory access occur in the encoding process. Due to many numbers of 
memory access, the conversion speed of the MOF𝑤𝑤 algorithm is much slower than the NAF𝑤𝑤 
algorithm. In the CCS recoding algorithm, since the methods of calculating 1's complement, 
the NAF𝑤𝑤 algorithm and a sliding window method are consecutively used, the speed of the 
CCS recoding algorithm is also slower than the NAF𝑤𝑤 algorithm.  

In addition to the algorithms mentioned above, there are various algorithms that generate 
signed-digit representation. First, the algorithm proposed in [25] combines the {0, 1, 3}-NAF 
algorithm and the {-1, 0, 1}-NAF algorithm. The {-1, 0, 1}-NAF algorithm uses the 
pre-generated look up table for conversion. That is, the {-1, 0, 1}-NAF algorithm and the 
algorithm proposed in [25] have many number of memory access. Therefore, they are slower 
than the NAF𝑤𝑤 algorithm. Second, algorithms proposed in [26] and [27] are aim at reducing 
the Hamming weight of Radix-r representation. The NAF𝑤𝑤 algorithm is the same as Radix-2 
representation, and the Hamming weight decreases as size of w increases. When Radix is 2, 
Hamming weight of the algorithms proposed in [26] and [27] is same as Hamming weight of 
the NAF𝑤𝑤 algorithm. However, they have many number of memory access. Therefore, the 
algorithms proposed in [26] and [27] are slower than the NAF𝑤𝑤  algorithm. Most NAF 
conversion algorithms are slower than the NAF𝑤𝑤 algorithm. 

An improve signed-digit representation for the multiplier-free implementation of constant 
vector multiplication was proposed in [28]. This approach is intended to make it suitable for 
circuit design unlike the NAF conversion algorithms mentioned above. In this paper, we target 
on improving the NAF conversion speed of the NAF𝑤𝑤 algorithm through improvement of the 
algorithm itself. 

 

3. Proposed Algorithm 
In this section, we describe how the SNAF𝑤𝑤 algorithm converts 𝑘𝑘 into NAF𝑤𝑤(𝑘𝑘). We also 
show the theoretical performance analysis results.  
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Algorithm 3. SNAF𝑤𝑤 algorithm 
Input : positive integer 𝑘𝑘,𝑤𝑤 (𝑤𝑤 ≥ 2) 
Output : NAF𝑤𝑤(𝑘𝑘) =  𝑘𝑘𝑚𝑚, 𝑘𝑘𝑚𝑚−1, . . . , 𝑘𝑘1, 𝑘𝑘0 

1 : 𝑖𝑖 ← 0 , 𝑥𝑥 
2 : while 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 do 
3 :  while 𝑘𝑘 is 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 do 
4 :   𝑘𝑘𝑖𝑖 ← 0, 𝑘𝑘 ← 𝑘𝑘 ≫ 1, 𝑖𝑖 ← 𝑖𝑖 + 1 
5 :  end while 
6 :  𝑥𝑥 ← 𝑘𝑘&(2𝑤𝑤 − 1) 
7 :  if 𝑥𝑥 < 2𝑤𝑤−1 then 
8 :   𝑘𝑘𝑖𝑖 ← 𝑥𝑥 
9 :   if 𝑥𝑥 = 𝑘𝑘 then 

10 :    𝑖𝑖 ← 𝑖𝑖 + 1, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
11 :   end if 
12 :  else 
13 :   𝑘𝑘𝑖𝑖 ← 𝑥𝑥 − 2𝑤𝑤 , 𝑘𝑘 ← 𝑘𝑘 + 2𝑤𝑤 
14 :  end if 
15 :  𝑘𝑘𝑖𝑖+𝑤𝑤−1 ← 0, . . . , 𝑘𝑘𝑖𝑖+1 ← 0, 𝑘𝑘 ← 𝑘𝑘 ≫ 𝑤𝑤, 𝑖𝑖 ← 𝑖𝑖 + 𝑤𝑤 
16 : end while 
17 : Return (𝑘𝑘𝑚𝑚, 𝑘𝑘𝑚𝑚−1, . . . , 𝑘𝑘1, 𝑘𝑘0) 

 

3.1 Operation of 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒘𝒘 
In Algorithm 3, we describe the pseudocode of the SNAF𝑤𝑤 algorithm. The SNAF𝑤𝑤 algorithm 
consists of two functional modules: (1) single comparison-and-shift encoding for w bits and (2) 
conditional completion of the NAF conversion.  
3.1.1 Single Comparison-and-Shift Encoding for w Bits : When 𝑘𝑘 is even, the SNAF𝑤𝑤 
algorithm sets 𝑘𝑘𝑖𝑖  into 0 and then, shifts 𝑘𝑘  to the right side by one bit. The one-bit 
comparison-and-shift encoding is repeated until 𝑘𝑘 is an odd number as shown in lines 3 and 5. 
When 𝑘𝑘 is odd, we compute 𝑘𝑘𝑖𝑖 by following the procedure in lines 6 to 15. At line 6, 𝑥𝑥 is set 
into the decimal value of the rightmost 𝑤𝑤 bits in 𝑘𝑘. Next, as shown in lines 7 to 10, if 𝑥𝑥 is less 
than 2𝑤𝑤−1, 𝑘𝑘𝑖𝑖 is set into 𝑥𝑥. If 𝑥𝑥 is equal to 𝑘𝑘, the NAF conversion is completed because 𝑥𝑥 = 𝑘𝑘 
implies that the other bits except for the rightmost 𝑤𝑤 bits in 𝑘𝑘 are 0s. However, if 𝑥𝑥 is larger 
than or equal to 2𝑤𝑤−1, 𝑘𝑘𝑖𝑖 is set into 𝑥𝑥 − 2𝑤𝑤 because 2's complement of 𝑥𝑥 should be set into 𝑘𝑘𝑖𝑖. 
Also, as 𝑘𝑘 value increases by 2𝑤𝑤, carry is generated.  

This is because even after 2's complement of 𝑥𝑥 is set into 𝑘𝑘𝑖𝑖, 𝑘𝑘 should be equal to NAF𝑤𝑤(𝑘𝑘). 
Finally, as shown in line 15, 𝑘𝑘𝑖𝑖+1 to 𝑘𝑘𝑖𝑖−𝑤𝑤+1 are set into 0s. That is, the SNAF𝑤𝑤 algorithm does 
a single comparison-and-shift encoding for 𝑤𝑤  bits instead of 𝑤𝑤  numbers of one-bit 
comparison-and-shift encoding. As a result, the SNAF𝑤𝑤  algorithm reduces the number of 
comparison-and-shift encoding compared to the NAF𝑤𝑤 algorithm.  
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Fig. 2. Operation process of 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝟑𝟑 algorithm 

 
For example, from (100011)2 for 𝑘𝑘 =35 in Fig. 2(a), the binary representation of 𝑥𝑥 is set 

into (011)2 which is less than 23−1. Thus, after setting 𝑘𝑘𝑖𝑖  into (011)2 and setting 𝑘𝑘𝑖𝑖+1 to 
𝑘𝑘𝑖𝑖+2 into 0, (100011)2 shifts to the right side by 3 bits and the binary representation of 𝑥𝑥 is 
set into (100)2 . On the other hand, from (100101)2  for 𝑘𝑘  =35 in Fig. 2(b), the binary 
representation of 𝑥𝑥 is set into (101)2 which is larger than 23−1. After 𝑘𝑘𝑖𝑖 is set into 3� , the 
binary representation of 𝑘𝑘 is updated into (101101)2 with carry at the 𝑤𝑤𝑡𝑡ℎ position. Finally, 
(101101)2 is shifted to the right side by 3 bits and the binary representation of 𝑥𝑥 is set into 
(101)2.  

Compared to the NAF𝑤𝑤  algorithm that requires 𝑙𝑙  numbers of comparison-and-shift 
encoding, the SNAF𝑤𝑤  algorithm takes only (2 × 𝑙𝑙)/(𝑤𝑤 + 1)  numbers of 
comparison-and-shift encoding on average. In section 3.2.1, we show the analysis results in 
details. 
 
3.1.2 Conditional NAF Conversion : The 𝑖𝑖𝑡𝑡ℎ element of NAF𝑤𝑤(𝑘𝑘), i.e., 𝑘𝑘𝑖𝑖, is an odd integer, 
where |𝑘𝑘𝑖𝑖| < 2𝑤𝑤−1. Among 𝑘𝑘𝑖𝑖s, note that 𝑘𝑘𝑚𝑚 should be a positive integer because the value of 
NAF𝑤𝑤(𝑘𝑘), i.e., (𝑘𝑘𝑚𝑚 × 2𝑚𝑚) + ⋯+ (𝑘𝑘0 × 20), is positive. That is, 𝑘𝑘𝑚𝑚 is a positive odd integer, 
which is less than 2𝑤𝑤−1. Thus, as shown in lines 9 to 11, if 𝑘𝑘𝑚𝑚 is equal to 𝑘𝑘, the SNAF𝑤𝑤 
algorithm can complete the NAF conversion.  

For example, let us assume that 𝑤𝑤 is equal to 3 and the length of 𝑘𝑘(2) is equal to 3. Since 
𝑘𝑘(2) is a positive binary number, 𝑘𝑘(2) can be one of (001)2, (011)2, (010)2, (100)2, (110)2, 
(101)2  and (111)2 . When 𝑘𝑘(2)  is either (001)2  or (011)2 , 𝑥𝑥  is set into either (001)2  or 
(011)2 respectively. That is, since 𝑥𝑥 is equal to 𝑘𝑘, the NAF conversion is completed. When 
𝑘𝑘(2)  is either (010)2 , (100)2  or (110)2 , 𝑥𝑥  is set into either (010)2 , (100)2  or (110)2 
respectively. Since 𝑥𝑥  is not the positive odd integer less than 23−1, comparison-and-shift 
encoding for 𝑤𝑤 bits is conducted and then, 𝑘𝑘(2) is set into either (001)2 or (011)2. Since 𝑥𝑥 
becomes equal to 𝑘𝑘, the NAF conversion is completed. Finally, when 𝑘𝑘(2) is either (101)2 or 
(111)2 , 𝑥𝑥  is set into either (101)2  or (111)2  respectively. After an one-bit 
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comparison-and-shift encoding is conducted, carry is generated. Thus, 𝑘𝑘(2) is set into (001)2 
and the NAF conversion is completed. From this example, we observe that 𝑘𝑘𝑚𝑚 is a unique 
positive odd integer less than 2𝑤𝑤−1.  

Compared to the NAF𝑤𝑤  algorithm that requires 𝑙𝑙  numbers of bit comparison to check 
whether the NAF conversion is completed, the SNAF𝑤𝑤 algorithm takes 𝑙𝑙/2(𝑤𝑤 + 1) numbers 
of bit comparison. In section 3.2.2, we show the analysis results in details. 

3.2 Performance Analysis of the 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒘𝒘 Algorithm 
In this section, we analyze how the SNAF𝑤𝑤 algorithm takes (2 × 𝑙𝑙)/(𝑤𝑤 + 1) numbers of 

comparison-and-shift encoding and 𝑙𝑙/2(𝑤𝑤 + 1) numbers of bit comparison on average for 
conditional completion of the NAF conversion.  

For the 𝑤𝑤-width scanning window, each of 2𝑤𝑤 bit patterns is generated with the probability 
1/2𝑤𝑤 . Since 𝑘𝑘(2)  consists of 𝑙𝑙/2  numbers of non-zero or zero bits in probability, the 
probability that the 𝑖𝑖𝑡𝑡ℎ bit of 𝑘𝑘(2) is zero or one is 1/2, i.e., Pr(0)=1/2 and Pr(1)=1/2. Given 
2𝑤𝑤 bit patterns, we classify them into four pattern groups from 𝑃𝑃1 to 𝑃𝑃4. First, 𝑃𝑃1 consists of 
2𝑤𝑤−2 bit patterns whose LSBs in the 𝑤𝑤-width scanning window are 1 and whose decimal 
values are smaller than 2𝑤𝑤−1. Second, 𝑃𝑃2 consists of 2𝑤𝑤−2 bit patterns whose LSBs of the 
𝑤𝑤-width scanning window are 1 and whose decimal values are larger than 2𝑤𝑤−1. Third, 𝑃𝑃3 
consists of 2𝑤𝑤−1 − 1 bit patterns whose LSBs of the 𝑤𝑤-width scanning window are 0, except 
for a bit sequence with all zero bits. Finally, 𝑃𝑃4 consists of a single bit pattern with all zero bits. 
For example, when 𝑤𝑤 is 3, (001)2 and (011)2 bit patterns are classified into 𝑃𝑃1. (101)2 and 
(111)2 bit patterns are classified into 𝑃𝑃2. Also, (010)2, (100)2 and (110)2 are classified into 
𝑃𝑃4. Finally, (000)2 is classified into 𝑃𝑃4. 
3.2.1 Number of Comparison-and-Shift Encoding : From Algorithm 3, bit patterns in 𝑃𝑃1 
to 𝑃𝑃4 takes the different types of comparison-and-shift encoding. Bit patterns in 𝑃𝑃1 and 𝑃𝑃2 take 
only a single comparison-and-shift encoding. On the other hand, bit patterns in 𝑃𝑃4 take 𝑤𝑤 
numbers of comparison-and-shift encoding. Bit patterns in 𝑃𝑃3 belong to 𝑃𝑃1 or 𝑃𝑃2 after being 
shifted to the right side until LSB of the 𝑤𝑤-width scanning window is 1. In this case, 
comparison-and-shift encoding by as much as the number of shifts to the right side is taken. 
Then, 𝑃𝑃1  or 𝑃𝑃2  take one comparison-and-shift encoding. Also, for patters in 𝑃𝑃3 , the total 
number of the right-side shifts until LSB in the 𝑤𝑤-width scanning window is 1 is given into 
2𝑤𝑤 − 𝑤𝑤 − 1. 
 

Theorem. 1. (Number of bit shifts for 𝑷𝑷𝟑𝟑) For patters in 𝑷𝑷𝟑𝟑, the 𝐒𝐒𝐍𝐍𝐍𝐍𝐍𝐍𝒘𝒘 algorithm takes 
𝟐𝟐𝒘𝒘 −𝒘𝒘 − 𝟏𝟏 number of the right-side shifts until LSB in the 𝒘𝒘-width scanning window is 1. 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓(𝑤𝑤 = 2) = 1,𝑓𝑓(𝑤𝑤 = 3) = 4,𝑓𝑓(𝑤𝑤 = 4) = 11,𝑓𝑓(𝑤𝑤 = 5) = 26,𝑓𝑓(𝑤𝑤 = 6) = 51, … , 

𝑓𝑓(𝑛𝑛 + 1) − 𝑓𝑓(𝑛𝑛) = 2𝑛𝑛+1 − 1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 = 𝑤𝑤 − 1. 

𝑓𝑓(𝑛𝑛) = 𝑓𝑓(1) + � �2𝑘𝑘+1 − 1�
𝑛𝑛−1

𝑘𝑘=1
= 1 + 2� 2𝑘𝑘

𝑛𝑛−1

𝑘𝑘=1
− 𝑛𝑛 + 1 

          = 1 + 22(2𝑛𝑛−1 − 1) − 𝑛𝑛 + 1 = 2𝑛𝑛+1 − 𝑛𝑛 − 2. 

∴ 𝑓𝑓(𝑤𝑤) =  2𝑤𝑤 − 𝑤𝑤 − 1.                           (4) 
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Also, we can compute the number of comparison-and-shift encoding for 𝑃𝑃1 to 𝑃𝑃4 as follows: 
 

                       𝑔𝑔1�𝑃𝑃𝑗𝑗��
1 , for 𝑗𝑗 = 1 or 2

1 + 𝑓𝑓(𝑤𝑤)
2𝑤𝑤−1−1

 , for 𝑗𝑗 = 3
𝑤𝑤 , for 𝑗𝑗 = 4

, where 𝑃𝑃𝑗𝑗 is a bit pattern                   (5) 

 
From Equation 5, the average number of comparison-and-shift encoding for converting one bit 
of 𝑘𝑘(2) into 𝑘𝑘𝑖𝑖 is computed into: 
 

ℎ1(𝑤𝑤) =
2𝑤𝑤−2𝑔𝑔1(𝑃𝑃1) + 2𝑤𝑤−2𝑔𝑔1(𝑃𝑃2) + (2𝑤𝑤−1 − 1)𝑔𝑔1(𝑃𝑃3) + 𝑔𝑔1(𝑃𝑃4)

𝑤𝑤2𝑤𝑤 + 𝑓𝑓(𝑤𝑤)
 

            =
2𝑤𝑤−1 + 2𝑤𝑤−1 − 1 + 2𝑤𝑤 − 1

𝑤𝑤2𝑤𝑤 + 2𝑤𝑤 −𝑤𝑤 − 1
=

2(2𝑤𝑤 − 1)
(𝑤𝑤 + 1)(2𝑤𝑤 − 1) =

2
𝑤𝑤 + 1

                                      (6) 

 
Thus, when the length of 𝑘𝑘(2)  is 𝑙𝑙 , the SNAF𝑤𝑤  algorithm takes 2𝑙𝑙 (𝑤𝑤 + 1)⁄  numbers of 
comparison-and-shift encoding. 
Number of Bit Comparison for Conditional NAF Conversion : From Algorithm 3, to 
check whether the NAF conversion is completed, bit patterns in 𝑃𝑃1 take a bit comparison. 
However, bit patterns in 𝑃𝑃2 and 𝑃𝑃4 do not take a bit comparison. Since bit patterns in 𝑃𝑃3 
belong to 𝑃𝑃1 or 𝑃𝑃2 after one-bit shift to the right side, they takes a bit comparison to check 
whether the NAF conversion is completed. Since Pr(0) is equal to Pr(1), the probabilities 
that bit patterns in 𝑃𝑃3 belong to 𝑃𝑃1 or 𝑃𝑃2 are 50% respectively. Note that such a bit comparison 
is taken only when bit patterns in 𝑃𝑃3 belong to 𝑃𝑃1. As a result, to check whether the NAF 
conversion is completed, each pattern in 𝑃𝑃3 takes 1/2 numbers of bit comparison. That is, the 
number of bit comparison for each pattern group is given into:  
 

                               𝑔𝑔2�𝑃𝑃𝑗𝑗� �
1 , for 𝑗𝑗 = 1
0 , for 𝑗𝑗 = 2 or 4

0.5 , for 𝑗𝑗 = 3
, where 𝑃𝑃𝑗𝑗 is a bit pattern                         (7) 

 
From Equation 7, the average number of bit comparison for converting one bit of 𝑘𝑘(2) into 𝑘𝑘𝑖𝑖 
is computed into:  
 

ℎ2(𝑤𝑤) =
2𝑤𝑤−2𝑔𝑔2(𝑃𝑃1) + 2𝑤𝑤−2𝑔𝑔2(𝑃𝑃2) + (2𝑤𝑤−1 − 1)𝑔𝑔2(𝑃𝑃3) + 𝑔𝑔2(𝑃𝑃4)

𝑤𝑤2𝑤𝑤 + 𝑓𝑓(𝑤𝑤)
 

 

             =
2𝑤𝑤−2 + 2−1(2𝑤𝑤−1 − 1)
𝑤𝑤2𝑤𝑤 + 2𝑤𝑤 −𝑤𝑤 − 1

=
2−1(2𝑤𝑤 − 1)

(𝑤𝑤 + 1)(2𝑤𝑤 − 1) =
1

2(𝑤𝑤 + 1)
                                       (8) 

 
Thus, when the length of 𝑘𝑘(2) is 𝑙𝑙, the SNAF𝑤𝑤 algorithm checks whether the NAF conversion 
completes after 𝑙𝑙 2(𝑤𝑤 + 1)⁄  numbers of bit comparison for conditional completion. 
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Fig. 3. Example of 𝐍𝐍𝐍𝐍𝐍𝐍𝟑𝟑 operation, where the circle 'O' at phase 6 indicates carry 

 

 
Fig. 4. Example of 𝐒𝐒𝐍𝐍𝐍𝐍𝐍𝐍𝟑𝟑 operation, where the circle 'O' at phase 4 indicates carry 

 

3.3 Example 
By considering a binary representation (010100011)2 for 𝑤𝑤=3, we show the comparative 

example of the SNAF𝑤𝑤 algorithm and the NAF𝑤𝑤 algorithm.  
 

3.3.1 Operational Example of 𝐍𝐍𝐍𝐍𝐍𝐍𝒘𝒘 : In Fig. 3, we observe that to complete the NAF 
conversion, the NAF3  algorithm computes NAF3(163)  after 9 numbers of 
comparison-and-shift encoding. If LSB in the 3-bit scanning window is 1 as shown in phases 1 
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and 6, 𝑘𝑘0 and 𝑘𝑘5 are set into 3 and 3� respectively. After computing 𝑘𝑘0 and 𝑘𝑘5, 𝑤𝑤 bits within 
the scanning window are updated into 0 and then, (010100011)2 shifts to the right side by 
one bit. Also, if LSB in the 3-bit scanning window is 0 as shown in the phases 2 to 5, 7 and 8, 
𝑘𝑘1  to 𝑘𝑘4 , 𝑘𝑘6  and 𝑘𝑘7  are set into 0 respectively. While computing 𝑘𝑘1  to 𝑘𝑘4 , 𝑘𝑘6  and 𝑘𝑘7 , 
(010100011)2  moves to the right side by one bit respectively. Finally, after 𝑘𝑘8  in 
(000000001)2  is inspected in phase 9, (010100011)2 , i.e., 𝑘𝑘=163, is converted into 
(1003�00003)𝑁𝑁𝑁𝑁𝑁𝑁. 
 
3.3.2 Operational Example of 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒘𝒘 : In Fig. 4, we observe that to complete the NAF 
conversion, the SNAF3  algorithm computes NAF𝑤𝑤(𝑘𝑘)  after 5 numbers of 
comparison-and-shift encoding, which is less than the NAF3 algorithm. At phase 1, since 𝑥𝑥 is 
given into 3, 𝑘𝑘0 is set into 3 and 𝑘𝑘1 to 𝑘𝑘2 are set into 0 and then, (010100011)2 shifts to the 
right side by 𝑤𝑤 bits. At phases 2 and 3, since LSB within the 𝑤𝑤-size scanning window are 0s, 
𝑘𝑘4 to 𝑘𝑘3 are set into 0s. In phase 4, 𝑥𝑥 is given into 5, 𝑘𝑘5 is set into 3� and 𝑘𝑘6 to 𝑘𝑘7 are set into 0. 
In this phase, as 𝑥𝑥 is larger than 23−1, 23 is added to (101)2. That is, since carry occurs, 
(000001101)2  shifts to the right side by 𝑤𝑤  bits. Finally, after 𝑘𝑘8  in (000000001)2  is 
inspected in phase 5, (010100011)2, i.e., 𝑘𝑘=163, is converted into (1003�00003)𝑁𝑁𝑁𝑁𝑁𝑁. 

4. Performance Evaluation 
In this section, we show the performance evaluation results of the SNAF𝑤𝑤 algorithm and 

other NAF conversion algorithms. 

4.1 Experimental Environment 
To evaluate the performance of the SNAF𝑤𝑤 algorithm, we compared the NAF conversion 

speed of the SNAF𝑤𝑤  algorithm with those of the NAF𝑤𝑤 , MOF𝑤𝑤  and scan­NAF algorithms. 
Our previous research, the scan­NAF algorithm, improves the conversion speed of the NAF𝑤𝑤 
algorithm through direct assignment instead of calculation for 𝑘𝑘𝑖𝑖s. However, when 𝑤𝑤 > 2, the 
scan­NAF  algorithm has a limit that has almost the same performance as the NAF𝑤𝑤 
algorithm[29].  

When comparing the NAF conversion speed, we measured the cycle counter on the 
low-performance 8-bit microprocessor ATmega128 by using AVR studio 4. This is because 
AVR studio 4 calculates the cycle counters required to execute assembly instructions 
regardless of the performance of the microprocessors. Also, it was observed that compared to 
16-bit microprocessor and 32-bit processor, the cycle counter difference between the SNAF𝑤𝑤 
algorithm and the others was minimized in 8-bit ATmeage128. Thus, we measured cycle 
counters on 8-bit microprocessor ATmega128 by using AVR studio 4.  

When converting 𝑘𝑘(2) into NAF, the performance of the NAF𝑤𝑤  and SNAF𝑤𝑤 algorithms can 
vary according to the input patterns, each of which consists of diverse alignment and different 
numbers of `0' and `1'. This is because the comparison-and-shift encoding for `0' is faster than 
that for `1'. Thus, we consider the influence of the following input variables on the NAF 
conversion speed:  
• Diverse Patterns : To evaluate the influence of the number of bit 1 on the NAF conversion 

speed, we generate diverse patterns, each of which consists of different number of bit 0 or bit 1 
within bits less than or equal to 3. 
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• Different Numbers of Repeated Patterns : To evaluate the influence of the length of 𝑘𝑘(2) 
on the NAF conversion speed, we change the number of repeated patterns. 
• Various Size of 𝑤𝑤  : To evaluate the influence of the scanning width on the NAF 

conversion speed, we change the value of 𝑤𝑤.  
 

 
Fig. 5. Cycle counters of 𝐍𝐍𝐍𝐍𝐍𝐍𝟐𝟐, 𝐌𝐌𝐌𝐌𝐌𝐌𝟐𝟐, 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬-𝐍𝐍𝐍𝐍𝐍𝐍 and 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝟐𝟐 for different 𝒌𝒌s 

4.2 𝐍𝐍𝐍𝐍𝐍𝐍𝒘𝒘 𝒗𝒗𝒗𝒗.𝐌𝐌𝐌𝐌𝐌𝐌𝒘𝒘 𝒗𝒗𝒗𝒗. 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬-𝐍𝐍𝐍𝐍𝐍𝐍 𝒗𝒗𝒗𝒗.𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒘𝒘 (𝒘𝒘 = 𝟐𝟐) 

For 𝑤𝑤 =2, to measure cycle counters of the NAF𝑤𝑤 , MOF𝑤𝑤 , scan­NAF  and SNAF𝑤𝑤 
algorithms, we considered all the possible 𝑘𝑘 given from 9 bits, i.e., 256 for (100000000)2 to 
511 for (111111111)2. In Fig. 5, it is observed that the NAF2 algorithm takes at least 236 
cycle counters, up to 300 cycle counters, and 280 cycle counters on average. The MOF2 
algorithm shows the same cycle counter, i.e., 368, for all 𝑘𝑘s. The scan­NAF algorithm takes at 
least 227 cycle counters, up to 277 cycle counters, and 254 cycle counters on average. 
Compared to the NAF2, MOF2 and scan­NAF algorithms, the SNAF2 algorithm takes at least 
191 cycle counters, up to 225 cycle counters, and 213 cycle counters on average. That is, the 
SNAF2 algorithm takes the less cycle counter than the MOF2 algorithm, scan­NAF algorithm 
and the NAF2 algorithm for all the possible 𝑘𝑘s. 

In the NAF2, scan­NAF and SNAF2 algorithms, as the number of cases in which LSB of 
scanning window is 1 or 0 varies, the cycle counter for completing the NAF conversion varies. 
This is because comparison-and-shift encoding time of the NAF𝑤𝑤 algorithm, the scan­NAF 
algorithm and the SNAF𝑤𝑤 algorithm is different according to bit 0 and bit 1. However, in the 
MOF2 algorithm, the cycle counter for completing the NAF conversion is the same for all 𝑘𝑘s. 
This is because the MOF2  algorithm is designed to do the same comparison-and-shift 
encoding regardless of bit 0 and bit 1.  
 

Table 2. Average and deviation gain of 𝐒𝐒𝐍𝐍𝐍𝐍𝐍𝐍𝟐𝟐 algorithm over 𝐍𝐍𝐍𝐍𝐍𝐍𝟐𝟐 (unit:%) 

 Repeated Patterns 
1 01 10 001 011 100 101 110 

Average gain 21 24.3 18.6 22.3 24.3 21.9 25.3 24.7 
Deviation gain 31.3 36.4 31.4 35 36.7 35 37.2 36.7 
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Fig. 6. Cycle counters for repeated pattern (𝟏𝟏)𝟐𝟐 

(w=2) 

 
Fig. 7. Cycle counters for repeated pattern (𝟎𝟎𝟎𝟎)𝟐𝟐 

(w=2) 
 

 
Fig. 8. Cycle counters for repeated pattern (𝟏𝟏)𝟐𝟐 

(w=3) 

 
Fig. 9. Cycle counters for repeated pattern (𝟎𝟎𝟎𝟎)𝟐𝟐 

(w=3) 
 

4.3 𝐍𝐍𝐍𝐍𝐍𝐍𝒘𝒘 𝒗𝒗𝒗𝒗.𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒘𝒘 (𝒘𝒘 ≥ 𝟐𝟐) 
We show the measured cycle counter of the NAF𝑤𝑤 and SNAF𝑤𝑤 algorithms for 𝑤𝑤 ≥ 2. Since 

the MOF𝑤𝑤 algorithm is designed to operate only for 𝑤𝑤=2, it is not compared with the other 
algorithms in this section.  

 
4.3.1 Influence of Diverse Patterns : In this section, by considering all the possible bit 
patterns which are expressed from 𝑤𝑤=3 bits, we measured the cycle counters of the NAF𝑤𝑤 and 
SNAF𝑤𝑤 algorithms. Note that since we investigate the influence of the repeated bit patterns on 
the NAF conversion time, we ignore the bit pattern ‘111’. That is, we evaluated the NAF 
conversion time by considering diverse patterns with the different ratios of bit 0 and bit 1 in 
𝑘𝑘(2). To consider repetition of the 𝑤𝑤-size patterns in 𝑘𝑘(2), we measured cycle counters by 
varying the value of 𝑙𝑙 from 3 to 15. 

In Table 2, we summarize the average and deviation gains of the SNAF2 algorithm over the 
NAF2 algorithm. For the repeated patterns whose LSBs are 1 or which include two more 1s, 
the SNAF2 algorithm showed the average gain by 24% and the deviation gain by 36% over the 
NAF2 algorithm. For the other patterns whose LSBs are 0 or which include a single 1 not in 
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LSB, the SNAF2 algorithm showed the average gain by 20% and the deviation gain by 31% 
over the NAF2 algorithm. In particular, it is observed that the SNAF2 algorithm over the NAF2 
algorithm shows the higher deviation gain than the average gain. This indicates that the 
SNAF𝑤𝑤 algorithm shows the stable NAF conversion speed even when the length 𝑙𝑙 of 𝑘𝑘(2) 
increases and various input patterns exist in 𝑘𝑘(2). 

 
4.3.2 Influence of Number of Repeated Patterns : To investigate the influence of the 
repeated patterns on the NAF conversion time, cycle counters for the NAF2  and SNAF2 
algorithms were measured under various numbers of repetitions of (1)2 and (01)2 bit patterns. 
Specifically, cycle counters for the NAF conversion of 𝑘𝑘(2), where (1)2 pattern repetition is 
frequently found, are measured to investigate the influence of the repeated patterns whose 
LSBs of scanning window are 0. Also, cycle counters for the NAF conversion of 𝑘𝑘(2), where 
(01)2 pattern repetition is frequently found, are measured to investigate the influence of the 
repeated patterns whose LSBs of scanning window are 1.  

In Fig. 6 and Fig. 7, it is observed that for 𝑤𝑤=2, the SNAF2 algorithm takes the less cycle 
counters than the NAF2 algorithm. That is, the SNAF2 algorithm over the NAF2 algorithm 
shows average gain by 21% for (1)2 and 24.3% for (01)2 and deviation gain by 31.3% for 
(1)2 and 36.4% for (01)2. In Fig. 8 and Fig. 9, it is observed that for 𝑤𝑤=3, the SNAF3 
algorithm also takes the less cycle counters than the NAF3 algorithm. That is, the SNAF3 
algorithm over the NAF3 algorithm shows average gain by 11.8% for (1)2 and 14.3% for 
(01)2 and deviation gain by 26.7% for (1)2 and 29.9% for (01)2. 

In Fig. 6 to Fig. 9, we observe that cycle counter of the NAF𝑤𝑤 algorithm increases more 
steeply than that of the SNAF𝑤𝑤 algorithm. This implies that as the number of repeated patterns 
increases, the NAF conversion time gap between the NAF𝑤𝑤  algorithm and the SNAF𝑤𝑤 
algorithm steeply increases. Also, from Fig. 9, it is observed that when the number of repeated 
patterns increases from 2 to 3 or from 5 to 6, cycle counter does not vary. This is because the 
number of bit shifting is the same for these two cases. For example, if the size of 𝑤𝑤 is 3, 
(0101)2 with two numbers of (01)2 is changed into (1000)2 by carry propagation. After 
shifting 3 bits to the right side, (001)2 is investigated. Also, (010101)2 with three numbers 
of (01)2 is changed into (011000)2 by carry propagation. After shifting 3 bits to the right 
side, (011)2 is investigated. 

 

 
Fig. 10. Cycle counters under the various size of 

w (k : pattern '1' repeats 14 times) 

 
Fig. 11. Cycle counters for the various size of w 

(k : pattern '01' repeats 8 times) 
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4.3.3 Influence of Size of 𝒘𝒘 : In Fig. 10 and Fig. 11, we show cycle counters of the NAF𝑤𝑤 
algorithm and SNAF𝑤𝑤 algorithms for completing the NAF conversion when the size of 𝑤𝑤 
varies. In Fig. 10, we assume that 𝑘𝑘 includes 14 numbers of the pattern ‘1’ and in Fig. 11, we 
assume that 𝑘𝑘 includes 8 numbers of the pattern ‘01’. From Fig. 10 and Fig. 11, we observe 
that the SNAF𝑤𝑤 algorithm takes the less cycle counter than the NAF𝑤𝑤 algorithm regardless of 
the size of 𝑤𝑤. Also, it can be evaluated that the performance difference between the NAF𝑤𝑤 
algorithm and the SNAF𝑤𝑤 algorithm is large when the size of 𝑤𝑤 is 2, 3 or 4, which is generally 
used for the NAF conversion in many applications.  

In Fig. 10, the NAF𝑤𝑤 algorithm takes a constant cycle counter regardless of the size of 𝑤𝑤. 
This is because, in the first step of converting (11111111111111)2  to NAF𝑤𝑤(𝑘𝑘) , 
(11111111111111)2  becomes (100000000000000)2 . Therefore, the same number of 
comparison-and-shift encoding are required regardless of the size of 𝑤𝑤. On the other hand, as 
the size of 𝑤𝑤 increases, cycle counter of the SNAF𝑤𝑤 algorithm gradually increases. This is 
because the larger the size of 𝑤𝑤, the more cycle counters take to initialize and delete the data. 

 

 
Fig. 12. Instructions used for shift operation 

 
In Fig. 11, we observe that as the size of 𝑤𝑤 increases, cycle counter of the NAF𝑤𝑤 algorithm 

decreases. This is because the number of when LSB in 𝑤𝑤-width scanning window is one 
decreases as the size of 𝑤𝑤 increases. Also, when 𝑤𝑤 is odd, the NAF𝑤𝑤 and SNAF𝑤𝑤 algorithms 
take many cycle counters compared to when 𝑤𝑤 is even. This is because, when 𝑤𝑤 is even, the 
NAF𝑤𝑤 and SNAF𝑤𝑤 algorithms do not generate carry while checking 𝑤𝑤-bit scanning window 
and thus, do comparison-and-shift encoding for 15 bits equal to (101010101010101)2 . 
However, when 𝑤𝑤 is odd, carry occurs and comparison-and-shift encoding for 16 bits are 
required. Thus, when 𝑤𝑤 is odd, cycle counter increases.  

In Fig. 10 and Fig. 11, cycle counter of the SNAF𝑤𝑤 algorithm decreases when the size of 𝑤𝑤 
is 7. This is because the register size of ATmega128 is 8 bits. For example, it is assumed that 
(00111111 11111111)2  is stored in the register R19 and R18 by as much as 8 bits 
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respectively. The SNAF𝑤𝑤 algorithm shifts to the right side by the size of 𝑤𝑤 as shown at line 15 
in Algorithm 3. The 1-bit right-side shift performs the ASR instruction for R19 and then 
executes the ROR instruction for R18. Thus, if the size of 𝑤𝑤 is 6, repeat such operation 6 times. 
However, when the size of 𝑤𝑤 is 7, such operation is not repeated. The 7-bit right-side shift in 
an 8-bit register is equal to discarding all bits other than MSB and shifting MSB to the LSB 
position. Note that this operation can be changed to a simple 1-bit left-side shift. Thus, the 
7-bit right-side shift performs the LSL instruction for R18, copies R19 into R18 and then, 
performs the ROL instruction for R18. Due to such operations, cycle counter when the size of 
𝑤𝑤  is 7 is reduced compared to when the size of 𝑤𝑤  is 6. In Fig. 12, we show how the 
instructions explained in this paragraph work. 

5. Conclusion 
As a method for integer encoding that minimizes Hamming weight, NAF removes a stream 

of non-zero bits from the binary representation of an integer. Compared to the other encoding 
methods, NAF has been used in diverse applications such as public key cryptography, packet 
filtering, constructing a ternary FCSRs and analysis for medical predictive models. In this 
paper, we proposed a new NAF conversion algorithm, called SNAF𝑤𝑤, which improves the 
NAF conversion speed of the NAF𝑤𝑤 algorithm. The SNAF𝑤𝑤 algorithm is designed to skip the 
unnecessary comparison-and-shift encoding and bit comparison for checking whether the 
NAF conversion is completed. From the experimental results under various input conditions, 
the SNAF𝑤𝑤 algorithm showed the faster NAF conversion time than the NAF𝑤𝑤 algorithm and 
other NAF conversion algorithms.  

Specifically, under diverse bit patterns, the SNAF2 algorithm showed the average gain by 
24% and the deviation gain by 36% over the NAF2 algorithm. Also, under different numbers 
of repeated patterns, the SNAF3  algorithm over the NAF3 algorithm showed the average gain 
by 11.8% to 14.3% and the deviation gain by 26.7% to 29.9%. Also, the SNAF𝑤𝑤 algorithm 
took the less cycle counter than the NAF𝑤𝑤 algorithm regardless of the size of 𝑤𝑤. In summary, 
the SNAF𝑤𝑤 algorithm improves the NAF conversion speed of the current NAF conversion 
algorithm. 
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