
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, Jul. 2018 3150
Copyright ⓒ 2018 KSII

Passive Overall Packet Loss Estimation at
the Border of an ISP
Haoliang Lan1, Wei Ding1 and YuMei Zhang2

1School of Computer Science and Engineering, Southeast University

 Nanjing, 211189 – CHINA

[email: hllan@njnet.edu.cn]
2School of Big Data and Information Engineering, Guizhou University

Guiyang, 550025 – CHINA

[email: yumeiz@yahoo.com]

*Corresponding author: Haoliang Lan

Received October 20, 2017; revised March 5, 2018; accepted March 14, 2018;

published July 31, 2018

Abstract
In this paper, a heuristic method that leverages packet traces captured at the entire boarder
of an ISP to distinguish and estimate the overall packet loss within an ISP’s management
domain (Intra_Path_Loss) and that in the outside Internet (Inter_Path_Loss) is proposed.
Our method is inspired by that packet losses happened at different locations will cause
different TCP sequence number patterns at the border of an ISP. Thereby, we leverage
these TCP sequence number patterns to build a series of heuristic rules to estimate
Intra_Path_Loss and Inter_Path_Loss, respectively. We do this work with an eye towards
showing that the overall packet losses defined and estimated in this paper can provide the
operators with some valuable information to help them precisely grasp the overall
performance of network paths and narrow down the range of network anomalies. The
proposed method is rigorously validated with simulations, and finally the results from a
regional academic network JSERNET1 verify its effectiveness and practicability.

1 JSERNET (Jiangsu Education and Research Network) is a regional academic network of CERNET. It
covers more than 100 research units and universities, and its backbone bandwidth increased from OC-48 to
OC-192 in January 2006.

http://doi.org/10.3837/tiis.2018.07.010 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3151

Keywords: Pakcet Loss rate, Estimation, Network performance management, Network
measurement

1. Introduction

As connection-oriented and reliable transport protocol, TCP has a natural response to

changes in network performance. Therefore, evaluating network performance with TCP
has always been a research hotspot within the academia. Meanwhile, the packet loss rate
as a key performance metric is important for both the operators and the end users. As
operators, accurate measurement for packet loss is crucial for classic network
management tasks, such as traffic engineering and capacity planning, while as end users,
the estimation for packet loss also enables them to achieve the monitoring for both quality
of service (QoS) and quality of experience (QoE) [1][2][3]. All along, since the doorsill
for obtaining the research data is lower, a lot of research has mainly focused on the
techniques of end-system packet loss estimation. For instance, Madhyastha et al. [4]
predict packet loss between arbitrary Internet hosts by composing the performance of the
measured segments. Friedl et al. [5] estimate packet losses with 100% accuracy by
measuring data segments at two endpoints of a connection. Basso et al. [6] derive a model
Inv-M from the well-known Mathis equation to estimate application-level packet loss,
and later they [7] further improve the accuracy of Inv-M by proposing a new model
L-Rex. Silveira et al. [8] estimate loss rates and their confidence intervals by building a
Hidden Semi-Markov Model (HSMM) for the measurement process. Hu et al. [9] present
a new packet loss estimation technique by making use of the user_data field of video.
Compared with the rich papers in this area, we only list a small part of recent research.
Such methods have a common feature, viz., they are all based on the information
available from the TCP sender-side and/or receiver-side, which allows the users to
measure networks in which they only control the endpoints of a TCP connection.
However, due to the traffic shaping and the events violating network neutrality, different
TCP connections may experience vastly different loss rates. From the perspective of
network performance management, the packet loss rate obtained by such methods is not
suitable for evaluating the overall packet loss status of the monitored network.

3152 Haoliang Lan et al.: Passive Overall Packet Loss Estimation at the Border of an ISP

This paper adds to the body of estimation techniques by detailing and validating a
method, which can be used by ISPs to distinguish and evaluate Intra_Path_Loss and
Inter_Path_Loss. Compared with previous work, our method has several attractive
properties, including:
 It doesn’t have the issues of difficult deployment and collaborative operation

consistency that exist in the methods that need to collect data from different vantage
points [4][5].

 The network sometimes processes each TCP stream unfairly, i.e., violating the
principle of network neutrality [6]. The packet loss rate experienced by a single TCP
connection may not be able to reflect the real packet loss status of the measured
network. Compared with traditional end-to-end measurements [4][5][6][7][8][9][10],
it can estimate packet loss rates of both the individual end-to-end connection and the
aggregated traffic.

 By dividing the destination addresses, it can obtain the overall loss rate between the
measured network and some specific network. Meanwhile, it can also distinguish
the packet loss within an ISP’s management domain and that in the outside Internet.
All these provide the network operators with the possibility for conducting
fine-grained analysis to the packet loss to precisely grasp the performance of the
network path.

First, to evaluate and distinguish the overall packet losses within an ISP and that in the
outside Internet, Intra_Path_Loss and Inter_Path_Loss are defined in this paper. As we
will show later, they can provide the network operators with some valuable information
about whether the network performance is maintained at a normal level or there are
problems within an ISP’s management domain and/or in the outside Internet. In addition,
for some abnormal events (such as earthquake, etc.), we can also study their impact by
conducting fine-grained analysis to the corresponding Intra_Path_Loss or
Inter_Path_Loss.

Second, heuristic techniques that estimate Intra_Path_Loss and Inter_Path_Loss are
introduced and validated, they are inspired by that packet losses happened at different
locations (within an ISP or in the outside Internet) will cause different TCP sequence
number patterns at the border of an ISP. Actually, these different TCP sequence number
patterns are related with different state transitions of the state machines in the sender-side
and receiver-sider that caused by packet losses at different locations. Therefore, our goal
is to build a series of heuristic rules to reflect these different TCP state transitions to
further estimate packet losses happened at different locations. Due to heuristic rules

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3153

always lack a general proof, thus we validate them using various simulations with
practically relevant parameters.

Finally, we use the proposed method to analyze the long-term packet loss status of a
regional academic network JSERNET between 2005 and 2016 with an eye towards for
verifying its practicability and effectiveness.

The rest of the paper is organized as follows: Intra_Path_Loss and Inter_Path_Loss are
defined in Section 2. Then Section 3 details and validates the corresponding packet loss
estimation algorithms. In Section 4, the results from a regional academic network are
presented and analyzed. Finally, Section 5 concludes the paper.

2. Definition of the Overall Packet Loss Rates

Fig. 1. Model for evaluating overall packet losses

Fig. 1 shows the simple model for evaluating Intra_Path_Loss and Inter_Path_Loss. Each
network path that crosses through the edge of network A is divided into two segments by
the capture point “P”. The N network path segments before “P” can be used to evaluate
the overall packet loss within the management domain of A, while the N network path
segments after “P” can be used to evaluate the overall packet loss in the outside Internet.
The concept of “before” and “after” in actual network references data flow direction.
Accordingly, Intra_Path_Loss is defined as the weighted sum of the N network path
segment loss rates before “P”:

3154 Haoliang Lan et al.: Passive Overall Packet Loss Estimation at the Border of an ISP

Intra_Path_Loss = �Pbefore_i ∗Wi
N

i=1

(1)

where Pbefore_i is the loss rate of the ith network path segment before “P”, and Wi is the
weighted value of the ith network path. Here, Wi is calculated as:

Wi =
Ntotal_i

� Ntotal_i
N

i=1

 (2)

where Ntotal_i is the number of data packets belonging to the ith network path.
Similarly, Inter_Path_Loss is defined as:

Inter_Path_Loss = �Pafter_i

N

i=1

∗ Wi (3)

where Pafter_i is the loss rate of the ith network path segment after “P”.
From discussion above, we can see that the key to obtain Intra_Path_Loss and

Inter_Path_Loss lies in estimating Pbefore_i and Pafter_i. Thus next our goal is to estimate the
loss rates of the two path segments separated by “P” and to be as accurate as possible.

3. Methodology and Validation

See Fig. 1 and consider the location that a data packet is lost in a TCP connection, it may
be lost before or after “P”. A data packet is lost at different locations will cause different
TCP sequence number patterns at “P”, which can be leveraged to estimate packet losses
on the network paths before and after “P”.

Fig. 2. Packet loss detection principle

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3155

Fig. 3. Simulation scenario

3.1 Packet Loss Estimation for Network Path before “P”
In this section, the Algorithm for Estimating Packet Losses on Network Path before “P”
(AEPLNPbefore) is introduced. AEPLNPbefore estimates packet losses by building a series of
heuristic rules that aim to accurately reflect the state transitions of TCP congestion state
machine in the sender-side caused by packet losses on network path before “P”. Consider
the situation that the server sends a row of data segments within the send window (e.g.,
D1, D2, D3 and D4 in Fig. 2) and a data segment (e.g., D3 in Fig. 2) is lost on the network
path before “P”, then the lost segment will cause a “hole” in the TCP data sequence.
When the TCP sender retransmits the lost segment (e.g., D5 in Fig. 2) to repair this packet
loss, the out-of-order segment D5 will appear at “P” and falls into the hole caused by the
lost segment D3. Therefore, AEPLNPbefore can detect a packet loss happened before “P” by
observing an out-of-order segment falls into a hole.

To implement AEPLNPbefore, the data sequence of a TCP connection is described with
set Soriginal={<S1, L1, I1>, …, <Sn, Ln, In>}, where ∀ i ∊ N, <Si, Li, Ii> denotes the ith data
segment appearing at “P”, Si denotes the sequence number of <Si, Li, Ii>, Li denotes the
byte length of <Si, Li, Ii>, Ii denotes the identification in the IP header of <Si, Li, Ii>. For
each <Si, Li, Ii>, where i >2, we select elements that are before <Si, Li, Ii> in Soriginal to
construct set Scheck={<S1, L1, I1>, …, <Sm, Lm, Im>}, where 1≤m<i, ∀ j ∊ N, Sj≤Sj+1.
Then according to the description in Fig. 2, the number of packet losses on the network
path before “P” in a TCP connection can be calculated as:

3156 Haoliang Lan et al.: Passive Overall Packet Loss Estimation at the Border of an ISP

Nbefore = �Ni

n

i=3

 (4)

where Ni is determined as following:

Ni = �1: ∃ <Sj, Lj, Ij> ∈ Scheck, Sj-1+Lj-1<Sj ∧ Sj-1<Si<Sj
0: otherwise

 (5)

In order to evaluate the simple algorithm, we implemented and validated it with packet
traces obtained from simulations. The simulation was carried out using Network
Simulator (NS-2) [11]. The simulated scenario, shown in Fig.3, consists of three nodes:
n0 (server), n1 (capture point) and n2 (client). The link rate and proportion delay was set
to 1Mbps and 10 ms, and the packet size was set to 1 Kbytes. TCP Reno and NewReno
were simulated separately, and total 20 TCP transfers were scheduled between the server
and the client to transfer a fixed-size file (100 Mbytes) during the simulation. For each
transfer, we collected packet traces from the three points and compared them to obtain the
accurate loss rates before and after “P”. On the other hand, we run our algorithms on the
packet traces collected from the capture point to get the estimated loss rates. Eventually,
the relative error is used to evaluate the accuracy of the simple algorithm, which is
calculated as the absolute difference between the estimated loss rate and the accurate loss
rate divided by the accurate loss rate:

Errorrelative =
|Lossestimated − Lossaccurate|

Lossaccurate
 (6)

Fig. 4. Simulation results of AEPLNPbefore

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3157

The simulation result is shown in Fig. 4. As can be seen, in the majority of parameter

space, AEPLNPbefore has higher accuracy when the loss rates are not high. For high loss
rates, the worst-case relative error was 0.51 and the corresponding accurate loss rate was
0.1, which implies the absolute error was 5.1%. Indeed, the error was mainly caused by
that the simple rule is not able to cover all sequence number patterns caused by packet
losses on the network path before “P”. When the loss rate becomes higher, more samples
not covered by the simple rule appeared, which made the estimation error become higher.
In most cases, it is hard and even impossible to take all possible sequence number
patterns into consideration just relying on the packet traces obtained from the capture
point. But fortunately, what we are interested in is not the exact number of packet losses
but how to make the estimated loss rate more accurate. Therefore, what we should do is
identifying and eliminating the main error sources. For the estimation errors of the simple
algorithm, we think the following factors associated with packet dynamics [12] can
explain to some extent.
 Packet reordering: Here packet reordering refers to a phenomenon that an earlier

sent packet arrives at “P” later than one or more later sent packet(s). In this case, the
segment arriving later is out-of-order and falls into a hole caused by the segments
arrived earlier, which fools our algorithm.

 Repeated packet losses: If a packet is lost multiple times on the network path before
“P”, our algorithm can only detect up to one time, because in this case, it can only
detect one data segment falling into the corresponding hole.

Except the error sources listed above, there must be others. For instance, the entire
window segments are lost will not cause any visible hole in the TCP data sequence, and it
typically happens at time when the sending window size is not big. However, as we will
see, the above two are the major ones. In order to exclude the effect of packet reordering,
we make use of the information contained in the identification in the IP header
(hereinafter referred to as IP-Id). To our knowledge, most operating systems increase the
value of IP-Id by one after completing every packet sending. So if there is a decrease of
the IP-Id (e.g., in Fig. 2, if the IP-Id of D5 is less than that of D4), we think it is caused by
packet reordering. In addition, consider the range identified by the IP-Id is 0 to 65535,
when the number of the data segments in a TCP connection is more than 65536, the IP-Id
will appear cyclic reuse, which can also cause a decreased IP-Id. Therefore, the
maximum decreased value is set to handle the IP-Id cyclic reuse. That is if the decreased
value exceeds a pre-defined threshold (e.g., 50000), the algorithm assumes the IP-Id

3158 Haoliang Lan et al.: Passive Overall Packet Loss Estimation at the Border of an ISP

cyclic reuse has occurred.
To cope with repeated packet losses, we search for packet losses that loss periods are 1.

The loss period, defined in RFC3357, refers to the number of packet losses that occur in a
row. Analyze the packet traces collected by the Flow_Mirror2, we found that roughly 60%
loss periods in a TCP connection are 1, the repeated packet losses occupied about 5% and
the number of consecutive packet losses is typically less than 3. Therefore, if M
represents the number of packet losses that the loss periods are 1, then the algorithm
assumes the number of repeated packet losses in a TCP connection is:

Nrepeated = �M ∗
5%

60% + 5%� ∗ (3− 1) (7)

After excluding the effect of the two factors above, the equation (4) is corrected as:

Nbefore = �Ni

n

i=3

+ Nrepeated (8)

where, Ni is corrected as:
Ni

= �1: ∃ <Sj, Lj, Ij> ∈ Scheck, Sj-1+Lj-1<Sj ∧ Sj-1<Si<Sj ∧ �Ij-1<Ii ∨ Ij-1– Ii≥5000�
0: otherwise

 (9)

In order to validate the improved algorithm, a simulation with the same settings was
performed. The results is also shown in Fig. 4. As can be seen, the relative errors of the
improved algorithm are controlled within 4% in most cases. Meanwhile, it increases the
estimation accuracy for both low-loss and high-loss situations. Moreover, the improved
algorithm has a more stable estimation performance with the increase of the loss rate. All
these improvements can be mainly attributed to that the rules dealing with packet
reordering and repeated packet losses reduced the false positives and false negatives,
respectively. Eventually, the improved AEPLNPbefore is given in Algorithm 1.

2 The Flow_Mirror is a system that we developed based on TCPDUMP, its client sides periodically perform
TCP transfers with instances of itself. During the transfers, the system collects traces at two endpoints of a
TCP connection and store them on the fixed server. Some of the collected data is named “IPTAS TCP Base
Database” and published on: http://iptas.edu.cn/src/system.php, so anyone is free to reuse them for research
purposes.

http://iptas.edu.cn/src/system.php

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3159

3.2 Packet Loss Estimation for Network Path after “P”
In this section, the Algorithm for Estimating Packet Losses on Network Path after “P”
(AEPLNPafter) is introduced. Similarly, AEPLNPafter estimates packet losses also by
building a series of heuristic rules that aim to accurately reflect the state transitions of the
state machines in the sender-side and receiver-side caused by packet losses after “P”.

Given that a packet is lost after “P” and is retransmitted, in this case, both the original
and retransmitted packets should appear at “P”. For instance, D6 in Fig. 2 is lost on the
network path after “P”, D7 is its retransmission and appears at “P”. Therefore, it is a
natural idea that leverage retransmissions at “P” to estimate packet losses on the network
path after “P”. But unfortunately, the situation is a little more complicated than what we
have described in Fig. 2. Since the flaw of TCP retransmission mechanisms can cause
spurious retransmissions in many cases[13][14], a simple statistics of retransmissions at
“P” will yield an overestimate for packet loss after “P”. Thus, to accurately estimate
packet losses, we need to develop rules to detect and exclude the spurious
retransmissions.

3160 Haoliang Lan et al.: Passive Overall Packet Loss Estimation at the Border of an ISP

Although some methods detecting spurious retransmissions were proposed
[13][14][15][16], but they are not suitable for use at point “P”. For instance, the Eifel
algorithm detects the spurious retransmissions leveraging TCP timestamp, but not all
connections enable the TCP timestamp option in actual network. Additionally, obtain
exact timestamp in the middle of the network (e.g., at boarder of an ISP) is difficult.
Again, the F-RTO algorithm needs the knowledge about the data segments that have been
sent within the same window, while it is not available when only using packet traces
captured at “P”. Hence, how to detect the spurious retransmissions at “P” becomes key to
our algorithm. If the number of spurious retransmissions in a TCP connection is
determined, then the number of packet losses on network path after “P” can be simply
calculated as the number of retransmitted segments minus the number of spurious
retransmissions:

Nafter = Nretransmitted − Nspurious (10)
Next, like the literatures [15] and [16], we try to leverage information contained in the

ACK stream to identify the spurious retransmission, but the specific approach is different.

Fig. 5. Retransmission pattern for SCA after RTO Fig. 6. Simulation results of PLEAPPafter

In fact, for different TCP acknowledgement mechanism, the form of ACKs is different.

Accordingly, different rules will be used to recognize the spurious retransmissions in this
paper. Currently there are three kinds of TCP acknowledgement mechanisms:
 Standard Cumulative Acknowledgment (SCA): According to RFC 5681, it

cooperates with the basic TCP congestion control mechanisms to repair the packet
losses (e.g., Reno, NewReno, BIC and CUBIC, etc.).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3161

 Selective Acknowledgment (SACK): It uses the SACK blocks to acknowledge
out-of-order segments that have arrived at the receiver and not covered by the
acknowledgement number. The SACK combines with a selective retransmission
policy at the sender-side to repair the packet losses and reduce the spurious
retransmissions. More details about SACK are available from RFC2018.

 Duplicate Selective Acknowledgment (D-SACK): This version, described in
RFC2883, is an extension to the SACK. It allows the receiver to inform the sender
about segments that have already arrived more than once. Therefore, we can
accurately determine a spurious retransmission with an ACK containing D-SACK
information.

For SCA, given that total seven segments (S1, S2, S3, S4, S5, S6,and S7) are sent, and only
S3, S6 and S7 arrive at the receiver. Fig. 5 shows the retransmission process after RTO
expiration in this case:

a) The sender retransmits S1, and the receiver sends an ACK for expecting S2 after
receiving S1.

b) Upon receiving the ACK for expecting S2, the cwnd (congestion window) at the
sender-side increases to two. Then, the sender retransmits S2 and S3 even through it
has no any knowledge about whether S3 is lost or not.

c) After receiving S2, the receiver sends the ACK for expecting S4 since S3 has already
arrived at the receiver. When the receiver receives the spurious retransmission of S3,
the duplicate ACK for expecting S4 is generated and transmitted.

d) Similarly, when S5, S6,and S7 arrive at the receiver, they will also cause duplicate
ACKs for expecting S8.

Inspired by this, the basic principle of our detection rule for SCA is that if the
retransmission is spurious, the acknowledgements for the original transmission and the
spurious retransmissions should all appear at “P”.

The ACK sequence of a TCP connection is described with set Asca={<A1, B1>, …,
<An, Bn>}, where ∀ i ∊ N, <Ai, Bi> denotes the ith ACK appearing at the capture point, Ai
denotes the acknowledgement number of <Ai, Bi>. Then Nafter can be calculated as:

Nafter = Nretransmitted −�Bi

n

i=1

 (11)

where Bi denotes the following:

Bi = �1: ∃Aj ∈ Asca, j<i ∧ Aj=Ai
0: otherwise

 (12)

3162 Haoliang Lan et al.: Passive Overall Packet Loss Estimation at the Border of an ISP

 On the other hand, for the duplicate ACK of SCA, we can prove the following:
Proposition 1. The duplicate ACK is caused by either spurious retransmission or

packet reordering.
Proof. In order to let the sender-side sent the data segment D that is suspected to be

lost as soon as possible and avoid RTO expiration, the fast retransmission requires the
receiver to immediately generate an ACK for expecting D upon receiving an out-of-order
data segment. Therefore, if the received data is out-of-order, then a duplicate ACK will be
generated. In contrary, if the received data is orderly and non-retransimitted, then it will
cause a new ACK. Else if the received data is orderly and necessary retransmission, it
will cause a new ACK, and if it is orderly and spurious retransmission, the duplicate
acknowledgement will be generated.

Therefore, for SCA, duplicate ACKs can be used to detect spurious retransmissions,
but need to exclude the effect of packet reordering, i.e., duplicate ACKs caused by packet
reordering shouldn’t be taken into account. As we know, the essence that packet
reordering can generate duplicate ACK is fast retransmission mechanism. Again,
sufficient packet reordering will cause fast retransmission (typically over a three duplicate
ACKs). Therefore, for a duplicate ACK, if the number of times it appears at the capture
point is greater than or equal to 4, we assume it is caused by packet reordering. Thus we
further denote Asca={<A1, B1, N1>, …, <An, Bn, Nn>}, where ∀ i ∊ N, <Ai, Bi, Ni>
denotes the ith ACK appearing at the capture point and Ni denotes the number of times
<Ai, Bi, Ni> appears at the capture point. To exclude the effect of packet reordering, Bi is
corrected as:

Bi = �1: ∃Aj ∈ Asca, j<i ∧ Aj=Ai ∧ Ni≤3
0: otherwise

 (13)

For SACK, with the help of SACK blocks, the TCP sender may not conduct spurious
retransmission in the case like Fig. 5. However, the spurious retransmissions still exist for
SACK. For example, the sender always clear the scoreboard of SACK blocks after RTO
expiration, while the receiver is not able to refill the scoreboard of the sender-side since it
always only acknowledges the most recently transmitted segments. In this case, the
sender has no any knowledge about the out-of-order segments that have already reached
the receiver, which results in inevitable spurious retransmissions. To detect the spurious
retransmissions for SACK, we reversely analyze the effect of spurious retransmission on
the receiver, viz., if the retransmission is spurious, the buffer state of the receiver-side
would not be changed. For SACK, the ACK stream of a TCP connection is described
with set Asack={<A1, S1, I1>, …, <An, Sn, In>}, where ∀ i ∊ N, <Ai, Si, Ii> denotes the ith

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3163

ACK appearing at “P”, Ai denotes the acknowledgement number of <Ai, Si, Ii>, Si
denotes the set of SACK blocks in the ith ACK, and Ii denotes the identification in IP
header of the ith ACK. Regarding the spurious retransmission for SACK, we can prove
the followings:
Proposition 2. ∃ <Ai, Si, Ii> caused by either spurious retransmission or ACK reordering,
Ai≤MAX(A1,A2, …, Ai-1) ∧ Si ⊂ ∪j<i Sj
Proof. If the received data is non-retransmitted, then due to the SACK field, no matter the
received data is orderly or not, a new ACK will be generated. If the received data is
retransmitted and spurious, then it would not change the buffer state of the receiver-side.
Thus, the information contained in the ACK caused by this spurious retransmission will
become redundant compared with that contained in the ACKs having already left the
receiver. When this ACK arrives at “P” and compared with the ACKs that have already
reached “P”, the redundant information makes it does not advance in acknowledgement
number and does not contain new SACK blocks. Else if the the received data is
retransmitted and non-spurious, then a new ACK will be generated as the buffer state of
the receiver-side is changed. On the other hand, consider the generated ACK. If it is
orderly, then the order in which it arrives at the capture point will be consistent with the
order in which it was sent at the receiver-side. Else if the ACK is out-of-order when
arriving at “P” (different from packet reordering, here called ACK reordering), in this
case, when compared with the information contained in the ACKs that were sent later but
have already arrived at “P” earlier, the information contained in this ACK may become
redundant or even less.

As discussed above, spurious retransmission can produce <Ai, Si, Ii> with the
characteristic of Ai≤MAX(A1,A2, …, Ai-1) ∧ Si ⊂ ∪j<i Sj. On the other hand, we can
conclude that not all ACKs with this characteristic are caused by spurious retransmissions.
Therefore, we can leverage this characteristic to detect spurious retransmission for SACK
but need to exclude the effect of ACK reordering. Faced with this, just like what we have
done in Section 3.1, the IP-Id is used to exclude the effect of ACK reordering. Concretely,
we have the following steps:
Step 1: for ∀<Ai, Si, Ii>, where Ai≤MAX(A1,A2, …, Ai-1) ∧ Si ⊂ ∪j<i Sj, we first make
Mi=MAX(A1,A2, …, Ai-1);
Step 2: according the obtained Mi, we search the first i-1 elements in Asack to find <Aj, Sj,
Ij> where Aj=Mi;
Step 3: we determine that <Ai, Si, Ii> is caused by spurious retransmission when and only
when Ii>Ij ∨ Ij – Ii≥5000.

3164 Haoliang Lan et al.: Passive Overall Packet Loss Estimation at the Border of an ISP

The solution described above doesn’t necessarily exactly exclude the effect of ACK
reordering, but it is expected to limit the error.

Finally, if the receiver supports D-SACK, it will send an ACK containing DSACK
blocks for each duplicate data segment. Therefore, AEPLNPafter can use the ACK
containing DSACK information to accurately determine a spurious retransmission. The
specific rules recognizing DSACK blocks can reference to RFC2883.

Likewise, we implemented the algorithm AEPLNPafter and validated it with packet
traces obtained from simulations. The simulations had the same settings as shown in
section 3.1, meanwhile we simulated three different types of TCP acknowledgement
mechanisms, respectively. The results are shown in Fig. 6, for comparison, the results of
retransmit-based estimation were also plotted.

As can be seen, the performance of retransmit-based estimations were worst, which
revealed the flaw of current TCP retransmission mechanisms and the necessity for
excluding the spurious retransmissions when estimating packet losses on the network path
after “P”. Additionally, we can also see that the retransmit-based estimation for SACK
and D-SACK was better than that for SCA. This can be attributed to the SACK field that
reduced the spurious retransmissions at the sender-side to some extent. For our algorithm,
compared with the retransmit-based estimation, it observably reduced the estimation
errors on the whole. Specifically, it achieved optimum performance on D-SACK transfers
with relative error of less than 10%. Analyze the errors for D-SACK, we found they are
all belonged to overestimates. This reflected the fact that for D-SACK, the segment
determined as spurious retransmission does reach the receiver more than once. Therefore,
it can be inferred that the estimation errors for D-SACK were all caused by the loss of
ACKs that specify spurious retransmissions. For SCA and SACK, the relative errors were
also controlled around 10% after excluding the spurious retransmissions. Different from
D-SACK, for SCA, our algorithm mainly excluded the spurious retransmissions caused
by slow start strategy after RTO expiration, and the result shows it achieved a good effect.
Thus, we can conclude that for SCA, most of spurious retransmissions are mainly caused
by the flaw in slow start strategy after RTO expiration. While for SACK, by leveraging
the ACKs having characteristic described in step 1, our algorithm also locates the
majority of spurious retransmissions caused by sender-side’s scoreboard information
missing. Thus given only the information available from the capture point, AEPLNPafter
has achieved a good estimation for packet losses happened after the capture point. While
for the estimation errors of SCA and SACK, we think the following factors can explain in a
certain extent.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3165

 Spurious fast retransmissions: AEPLNPafter can’t deal with the spurious fast

retransmission caused by sufficient packet reordering. It’s included in Ni and makes Bi
zero at the same time, which skews our estimation results.

 Lost ACKs: An ACK is lost in network may cause the corresponding spurious
retransmission cannot be recognized.

 Packet/ACK reordering: As we have mentioned, packet/ACK reordering can lead to an
ACK seems to be caused by spurious retransmission. Although the rule for SCA and the
IP-Id for SACK were used to exclude its negative effect, but they can only limite the
error and cannot make our estimate exactly right.

Eventually, the algorithm AEPLNPafter is given in Algorithm 2.

3166 Haoliang Lan et al.: Passive Overall Packet Loss Estimation at the Border of an ISP

Note: According to our research [17], although the entire border traffic of the monitored
network JSERNET is captured, but among the network environment of multiple-operators,
due to the network management capacity of some small access units is limited, the
misconfiguration will cause asymmetric routing at the border of JSERNET and eventually
result in small amount of artificial one-way traffic at the edge of the monitored network.
For one-way traffic, its causes may be benign (unreachable services, misconfiguration,
etc.) or malicious (attacks). Among them, the malicious is the major and doesn't need to
be considered when estimating packet losses. For the benign, the ACKs cannot be
leveraged, so we use the retransmissions at point “P” to estimate packet losses happened
after “P”.

4. Results From JSERNET

In this section, we apply the proposed method on a massive traffic traces captured from
the border of a regional academic network JSERNET to analyze its long-term packet
losses. The traffic traces were captured by the tool WATCHER which we developed and
maintain, and it was designed to capture all the traffic that crosses the border of
JSERNET destined to or coming from the Internet. The statistical information of traffic
traces used for packet loss analysis is shown in Table 1.

Table 1. Traffic traces used for packet loss analysis

4.1 Data Sanitization
For two-way traffic, packets containing source IPs that are not those really assigned to
their sending host, i.e., spoofed traffic [18], should not be taken into account when
estimating packet losses. Therefore, we use the methodology in the literature [18] to
exclude these traffic. It has two steps: firstly, find out the two-way TCP connections;
secondly, remove connections with too few packets (5 packets) or bytes (80 bytes). For
one-way traffic, we use the classifier described in the literature [19] to pick out the traffic
caused by asymmetric routing.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3167

Fig. 7. Packet loss status of JSERNET

3168 Haoliang Lan et al.: Passive Overall Packet Loss Estimation at the Border of an ISP

4.2 Results and Analysis
The results are shown in Fig. 7 (each point represents 10-minute interval). Concretely, in
Fig. 7 (a), the downlink overall loss rate after “P” is shown. As can be seen from Fig. 7
(a), the overall loss rate within JSERNET was kept in a normal level on the whole with
small fluctuations except that of 2014. Analyze the abnormal loss rates in 2014, we found
that when the abnormal loss rates appeared, the reports for DDOS attacks [20] was
generated almost simultaneously. Therefore, this indicates that the network congestion
caused by DDOS attacks may have some relationship with the abnormal loss rates. In
addition, the downlink overall loss rate before “P” is shown in Fig. 7 (b). The result in
Fig. 7 (b) is intuitive that the overall loss rate in the outside of JSERNET in 2007 had a
visible decline compared with that of 2006. The decline can be attributed to the upgrade
of JSERNET’s backbone bandwidth in January 2006 (from OC-48 to OC-192), and the
declined packet loss rates indicate that this upgrade made the original congestion line
become smooth.

Finally, Fig. 7 (c) ~ (h) shows the overall loss rates from Asia and other continents to
JSERNET. In Fig. 7 (c) ~ (h), we can see that except 2011, the overall loss rates from
Europe and North America to JSERNET were lower than other continents and even lower
than Asia. This, we believe, reflected the fact that Europe and North America are the
current internet hubs. Comparing with other continents, the good network infrastructure
and perfect connectivity within these two regions produced the lower loss rates. On the
other hand, Fig. 7 (b) shows the overall loss rate in the outside internet in 2011 was
remained at a normal level on the whole, but the overall loss rates for North America,
South America and Europe in 2011 increased instead. This is due to that the data for 2011
were captured during the earthquake happened in eastern seas of Japan, and these data
were specifically picked out to study the impact of the earthquake. As we all know, this
earthquake caused huge damage to the undersea cable, which resulted in large-scale
routing revocation and routing table reconstruction. See Fig. 7 (e) ~ (g), from the
increased loss rates in 2011, we can infer that this earthquake mainly led to the
interruption and congestion of some connections between JSERNET and North America,
South America and Europe.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3169

5. Conclution

In order to distinguish and evaluate the overall packet loss within an ISP’s management
domain and that in the outside Internet, Intra_Path_Loss and Inter_Path_Loss are defined
in this paper. Correspondingly, their estimation algorithms were presented and rigorously
validated with simulations. Finally, the results from a regional academic network
JSERNET demonstrated that the overall packet losses defined and estimated in this paper
can provide the operators with some valuable information to help them precisely grasp
the overall performance of network paths and narrow down the range of network
anomalies.

Acknowledgements

This paper was sponsored by the National Grand Fundamental Research 973 program of
China (2009CB320505); the National Nature Science Foundation of China (60973123).

References

[1] Feng, B., Zhou, H., Zhang, M., and Zhang, H, “Cache-Filter: A Cache Permission Policy for
Information-Centric Networking,” KSII Transactions on Internet and Information Systems
(TIIS), vol.9, no.12, pp. 4912-4933, December, 2015. Article (CrossRef Link).

[2] Zhou Liang, “On data-driven delay estimation for media cloud,” IEEE Transactions on
Multimedia, vol.18, no.5, pp. 905-915, May, 2016. Article (CrossRefLink).

[3] Zhou, Liang, “QoE-driven delay announcement for cloud mobile media,” IEEE Transactions
on Circuits and Systems for Video Technology, vol.27, no.1, pp. 84-94, January, 2017.
Article (CrossRefLink).

[4] Madhyastha, H. V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy, A., &
Venkataramani, A, “iPlane: An information plane for distributed services,” in proc. of the 7th
symposium on Operating systems design and implementation, pp. 367-380, November, 2006.
Article (CrossRefLink).

[5] Friedl, A., Ubik, S., Kapravelos, A., Polychronakis, M., & Markatos, E. P, “Realistic passive
packet loss measurement for high-speed networks,” in proc. of International Workshop on
Traffic Monitoring and Analysis, pp. 1-7, May, 2009. Article (CrossRefLink).

[6] Basso, S., Meo, M., Servetti, A., & De Martin, J. C, “Estimating packet loss rate in the access
through application-level measurements,” in proc. of the 2012 ACM SIGCOMM workshop on
Measurements up the stack, pp. 7-12, August, 2012. Article (CrossRefLink).

http://dx.doi.org/doi:10.3837/tiis.2015.12.010
https://doi.org/10.1109/TMM.2016.2537782
http://dx.doi.org/doi:10.1109/TCSVT.2016.2539698
https://dl.acm.org/citation.cfm?id=1298490
http://dx.doi.org/doi:10.1007/978-3-642-01645-5_1
http://dx.doi.org/doi:10.1145/2342541.2342545

3170 Haoliang Lan et al.: Passive Overall Packet Loss Estimation at the Border of an ISP

[7] Basso, Simone, Michela Meo, and Juan Carlos De Martin, “Strengthening measurements
from the edges: application-level packet loss rate estimation,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 3, pp. 45-51, July, 2013. Article (CrossRefLink).

[8] Silveira, Fernando, and Edmundo de Souza e Silva, “Predicting packet loss statistics with
hidden Markov models for FEC control,” Computer Networks, vol. 56, no. 2, pp. 628-641,
February, 2012. Article (CrossRefLink).

[9] Hu, Zhiguo and Qiqiang Zhang, “A new approach for packet loss measurement of video
streaming and its application,” Multimedia Tools and Applications, pp. 1-20, May, 2016.
Article (CrossRefLink).

[10] Nguyen, Hung X., and Matthew Roughan, “Rigorous statistical analysis of internet loss
measurements,” IEEE/ACM Transactions on Networking (TON), vol. 21, no. 3, pp. 734-745,
June, 2013. Article (CrossRefLink).

[11] NS-2 – The Network Simulator version 2.34, 2012, Article (CrossRefLink).
[12] Paxson, Vern, “End-to-End Internet Packet Dynamics,” ACM SIGCOMM Computer

Communication Review, vol.27, no.4, pp.139-152, September, 1997. Article (CrossRefLink).
[13] Ludwig R, Katz R H, “The Eifel algorithm: making TCP robust against spurious

retransmissions,” ACM SIGCOMM Computer Communication Review, vol. 30, no. 1, pp.
30-36, January, 2000. Article (CrossRefLink).

[14] Sarolahti, P., Kojo, M., Yamamoto, K., Hata, M, “An algorithm for detecting spurious
retransmission timeouts with TCP,” RFC 5682, IETF, September, 2009.
Article (CrossRefLink).

[15] Rani, SV Jansi, and P. Narayanasamy, "Enhancing TCP Performance by detecting spurious
RTO in Wireless Network," International Journal of Applied Engineering Research, vol.11,
no.4, pp. 2651-2657, March, 2016. Article (CrossRefLink).

[16] Priya, S. Sathya, and K. Murugan, “Improving TCP Performance in Wireless Networks by
Detection and Avoidance of Spurious Retransmission Timeouts,” Journal of Information
Science and Engineering, vol. 31, no.2, pp. 711-726, March, 2015. Article (CrossRefLink).

[17] Lan H, Ding W, Xia Z, “Asymmetric routing detection based on flow records,” Journal on
Communications, vol. 35, no. Z1, PP. 98-102, November, 2014. Article (CrossRefLink).

[18] Dainotti A, Benson K, King A, et al, “Estimating internet address space usage through
passive measurements,” ACM SIGCOMM Computer Communication Review, vol. 44, no.1,
pp. 42-49, January, 2014. Article (CrossRefLink).

[19] Glatz E, Dimitropoulos X, “Classifying internet one-way traffic,” in Proc. of the 2012 ACM
conference on Internet measurement conference, pp. 37-50, November, 2012.
Article (CrossRefLink).

http://dx.doi.org/doi:10.1145/2500098.2500104
http://dx.doi.org/doi:10.1145/1328690.1328698
http://dx.doi.org/doi:10.1007/s11042-016-3566-0
http://dx.doi.org/doi:10.1109/TNET.2012.2207915
http://www.isi.edu/nsnam/ns
http://dx.doi.org/doi:10.1109/90.779192
http://dx.doi.org/doi:10.1145/505688.505692
http://dx.doi.org/10.17487/RFC5682
http://www.ripublication.com/ijaer16/ijaerv11n4_82.pdf
http://dx.doi.org/doi:10.6688/JISE.2015.31.2.19
https://www.researchgate.net/publication/289679918_Asymmetric_routing_detection_based_on_flow_records
http://dx.doi.org/doi:10.1145/2567561.2567568
http://dx.doi.org/doi:10.1145/2398776.2398781

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3171

[20] Miao L, Ding W, Gong J, “A real-time method for detecting internet-wide SYN flooding
attacks,”, in Proc. of Local and Metropolitan Area Networks (LANMAN), 2015 IEEE
International Workshop on. IEEE, pp. 1-6, April, 2015. Article (CrossRefLink).

Haoliang Lan is a Ph.D candidate in school of computer science and engineering of
Southeast University. His major research interests include network measurement,
network management, and network security.

Wei Ding received B.S degree in the computer soft from Nanjing University in 1982.
She received Ph.D degree from Southeast University in 1995. Nowadays she is a
professor of Southeast University. Her major research interests include high speed
communications, network management, and network security.

YuMei Zhang is a M.S candidate in school of big data and information engineering
of Guizhou University. Her major research interests include network measurement and
network management.

http://dx.doi.org/doi:10.1109/LANMAN.2015.7114740

