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Abstract 
In this paper, a heuristic method that leverages packet traces captured at the entire boarder 
of an ISP to distinguish and estimate the overall packet loss within an ISP’s management 
domain (Intra_Path_Loss) and that in the outside Internet (Inter_Path_Loss) is proposed. 
Our method is inspired by that packet losses happened at different locations will cause 
different TCP sequence number patterns at the border of an ISP. Thereby, we leverage 
these TCP sequence number patterns to build a series of heuristic rules to estimate 
Intra_Path_Loss and Inter_Path_Loss, respectively. We do this work with an eye towards 
showing that the overall packet losses defined and estimated in this paper can provide the 
operators with some valuable information to help them precisely grasp the overall 
performance of network paths and narrow down the range of network anomalies. The 
proposed method is rigorously validated with simulations, and finally the results from a 
regional academic network JSERNET1 verify its effectiveness and practicability.  

1 JSERNET (Jiangsu Education and Research Network) is a regional academic network of CERNET. It 
covers more than 100 research units and universities, and its backbone bandwidth increased from OC-48 to 
OC-192 in January 2006. 
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1.  Introduction 

As connection-oriented and reliable transport protocol, TCP has a natural response to 

changes in network performance. Therefore, evaluating network performance with TCP 
has always been a research hotspot within the academia. Meanwhile, the packet loss rate 
as a key performance metric is important for both the operators and the end users. As 
operators, accurate measurement for packet loss is crucial for classic network 
management tasks, such as traffic engineering and capacity planning, while as end users, 
the estimation for packet loss also enables them to achieve the monitoring for both quality 
of service (QoS) and quality of experience (QoE) [1][2][3]. All along, since the doorsill 
for obtaining the research data is lower, a lot of research has mainly focused on the 
techniques of end-system packet loss estimation. For instance, Madhyastha et al. [4] 
predict packet loss between arbitrary Internet hosts by composing the performance of the 
measured segments. Friedl et al. [5] estimate packet losses with 100% accuracy by 
measuring data segments at two endpoints of a connection. Basso et al. [6] derive a model 
Inv-M from the well-known Mathis equation to estimate application-level packet loss, 
and later they [7] further improve the accuracy of Inv-M by proposing a new model 
L-Rex. Silveira et al. [8] estimate loss rates and their confidence intervals by building a 
Hidden Semi-Markov Model (HSMM) for the measurement process. Hu et al. [9] present 
a new packet loss estimation technique by making use of the user_data field of video. 
Compared with the rich papers in this area, we only list a small part of recent research. 
Such methods have a common feature, viz., they are all based on the information 
available from the TCP sender-side and/or receiver-side, which allows the users to 
measure networks in which they only control the endpoints of a TCP connection. 
However, due to the traffic shaping and the events violating network neutrality, different 
TCP connections may experience vastly different loss rates. From the perspective of 
network performance management, the packet loss rate obtained by such methods is not 
suitable for evaluating the overall packet loss status of the monitored network. 
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This paper adds to the body of estimation techniques by detailing and validating a 
method, which can be used by ISPs to distinguish and evaluate Intra_Path_Loss and 
Inter_Path_Loss. Compared with previous work, our method has several attractive 
properties, including: 
 It doesn’t have the issues of difficult deployment and collaborative operation 

consistency that exist in the methods that need to collect data from different vantage 
points [4][5]. 

 The network sometimes processes each TCP stream unfairly, i.e., violating the 
principle of network neutrality [6]. The packet loss rate experienced by a single TCP 
connection may not be able to reflect the real packet loss status of the measured 
network. Compared with traditional end-to-end measurements [4][5][6][7][8][9][10], 
it can estimate packet loss rates of both the individual end-to-end connection and the 
aggregated traffic. 

 By dividing the destination addresses, it can obtain the overall loss rate between the 
measured network and some specific network. Meanwhile, it can also distinguish 
the packet loss within an ISP’s management domain and that in the outside Internet. 
All these provide the network operators with the possibility for conducting 
fine-grained analysis to the packet loss to precisely grasp the performance of the 
network path. 

First, to evaluate and distinguish the overall packet losses within an ISP and that in the 
outside Internet, Intra_Path_Loss and Inter_Path_Loss are defined in this paper. As we 
will show later, they can provide the network operators with some valuable information 
about whether the network performance is maintained at a normal level or there are 
problems within an ISP’s management domain and/or in the outside Internet. In addition, 
for some abnormal events (such as earthquake, etc.), we can also study their impact by 
conducting fine-grained analysis to the corresponding Intra_Path_Loss or 
Inter_Path_Loss. 

Second, heuristic techniques that estimate Intra_Path_Loss and Inter_Path_Loss are 
introduced and validated, they are inspired by that packet losses happened at different 
locations (within an ISP or in the outside Internet) will cause different TCP sequence 
number patterns at the border of an ISP. Actually, these different TCP sequence number 
patterns are related with different state transitions of the state machines in the sender-side 
and receiver-sider that caused by packet losses at different locations. Therefore, our goal 
is to build a series of heuristic rules to reflect these different TCP state transitions to 
further estimate packet losses happened at different locations. Due to heuristic rules 
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always lack a general proof, thus we validate them using various simulations with 
practically relevant parameters. 

Finally, we use the proposed method to analyze the long-term packet loss status of a 
regional academic network JSERNET between 2005 and 2016 with an eye towards for 
verifying its practicability and effectiveness. 

The rest of the paper is organized as follows: Intra_Path_Loss and Inter_Path_Loss are 
defined in Section 2. Then Section 3 details and validates the corresponding packet loss 
estimation algorithms. In Section 4, the results from a regional academic network are 
presented and analyzed. Finally, Section 5 concludes the paper. 

 

2.  Definition of the Overall Packet Loss Rates 

 
Fig. 1. Model for evaluating overall packet losses 

 
Fig. 1 shows the simple model for evaluating Intra_Path_Loss and Inter_Path_Loss. Each 
network path that crosses through the edge of network A is divided into two segments by 
the capture point “P”. The N network path segments before “P” can be used to evaluate 
the overall packet loss within the management domain of A, while the N network path 
segments after “P” can be used to evaluate the overall packet loss in the outside Internet. 
The concept of “before” and “after” in actual network references data flow direction. 
Accordingly, Intra_Path_Loss is defined as the weighted sum of the N network path 
segment loss rates before “P”: 
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Intra_Path_Loss = �Pbefore_i ∗Wi                                                                         
N

i=1

(1) 

where Pbefore_i is the loss rate of the ith network path segment before “P”, and Wi is the 
weighted value of the ith network path. Here, Wi is calculated as: 

Wi =
Ntotal_i

� Ntotal_i
N

i=1

                                                                                             (2) 

where Ntotal_i is the number of data packets belonging to the ith network path.  
Similarly, Inter_Path_Loss is defined as: 

Inter_Path_Loss = �Pafter_i

N

i=1

∗ Wi                                                                             (3) 

where Pafter_i is the loss rate of the ith network path segment after “P”. 
From discussion above, we can see that the key to obtain Intra_Path_Loss and 

Inter_Path_Loss lies in estimating Pbefore_i and Pafter_i. Thus next our goal is to estimate the 
loss rates of the two path segments separated by “P” and to be as accurate as possible. 

 

3.  Methodology and Validation 

See Fig. 1 and consider the location that a data packet is lost in a TCP connection, it may 
be lost before or after “P”. A data packet is lost at different locations will cause different 
TCP sequence number patterns at “P”, which can be leveraged to estimate packet losses 
on the network paths before and after “P”. 

 
Fig. 2. Packet loss detection principle 
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Fig. 3. Simulation scenario 

 

3.1 Packet Loss Estimation for Network Path before “P” 
In this section, the Algorithm for Estimating Packet Losses on Network Path before “P” 
(AEPLNPbefore) is introduced. AEPLNPbefore estimates packet losses by building a series of 
heuristic rules that aim to accurately reflect the state transitions of TCP congestion state 
machine in the sender-side caused by packet losses on network path before “P”. Consider 
the situation that the server sends a row of data segments within the send window (e.g., 
D1, D2, D3 and D4 in Fig. 2) and a data segment (e.g., D3 in Fig. 2) is lost on the network 
path before “P”, then the lost segment will cause a “hole” in the TCP data sequence. 
When the TCP sender retransmits the lost segment (e.g., D5 in Fig. 2) to repair this packet 
loss, the out-of-order segment D5 will appear at “P” and falls into the hole caused by the 
lost segment D3. Therefore, AEPLNPbefore can detect a packet loss happened before “P” by 
observing an out-of-order segment falls into a hole. 

To implement AEPLNPbefore, the data sequence of a TCP connection is described with 
set Soriginal={<S1, L1, I1>, …, <Sn, Ln, In>}, where ∀ i ∊ N, <Si, Li, Ii> denotes the ith data 
segment appearing at “P”, Si denotes the sequence number of <Si, Li, Ii>, Li denotes the 
byte length of <Si, Li, Ii>, Ii denotes the identification in the IP header of <Si, Li, Ii>. For 
each <Si, Li, Ii>, where i >2, we select elements that are before <Si, Li, Ii> in Soriginal to 
construct set Scheck={<S1, L1, I1>, …, <Sm, Lm, Im>}, where 1≤m<i, ∀ j ∊ N, Sj≤Sj+1. 
Then according to the description in Fig. 2, the number of packet losses on the network 
path before “P” in a TCP connection can be calculated as: 
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Nbefore = �Ni

n

i=3

                                                                                                  (4) 

where Ni is determined as following: 

Ni = �1:  ∃ <Sj, Lj, Ij> ∈ Scheck, Sj-1+Lj-1<Sj ∧ Sj-1<Si<Sj
0: otherwise

                                                          (5) 

In order to evaluate the simple algorithm, we implemented and validated it with packet 
traces obtained from simulations. The simulation was carried out using Network 
Simulator (NS-2) [11]. The simulated scenario, shown in Fig.3, consists of three nodes: 
n0 (server), n1 (capture point) and n2 (client). The link rate and proportion delay was set 
to 1Mbps and 10 ms, and the packet size was set to 1 Kbytes. TCP Reno and NewReno 
were simulated separately, and total 20 TCP transfers were scheduled between the server 
and the client to transfer a fixed-size file (100 Mbytes) during the simulation. For each 
transfer, we collected packet traces from the three points and compared them to obtain the 
accurate loss rates before and after “P”. On the other hand, we run our algorithms on the 
packet traces collected from the capture point to get the estimated loss rates. Eventually, 
the relative error is used to evaluate the accuracy of the simple algorithm, which is 
calculated as the absolute difference between the estimated loss rate and the accurate loss 
rate divided by the accurate loss rate: 

Errorrelative =
|Lossestimated − Lossaccurate|

Lossaccurate
                                                                    (6) 

 

 
Fig. 4. Simulation results of AEPLNPbefore 
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The simulation result is shown in Fig. 4. As can be seen, in the majority of parameter 

space, AEPLNPbefore has higher accuracy when the loss rates are not high. For high loss 
rates, the worst-case relative error was 0.51 and the corresponding accurate loss rate was 
0.1, which implies the absolute error was 5.1%. Indeed, the error was mainly caused by 
that the simple rule is not able to cover all sequence number patterns caused by packet 
losses on the network path before “P”. When the loss rate becomes higher, more samples 
not covered by the simple rule appeared, which made the estimation error become higher. 
In most cases, it is hard and even impossible to take all possible sequence number 
patterns into consideration just relying on the packet traces obtained from the capture 
point. But fortunately, what we are interested in is not the exact number of packet losses 
but how to make the estimated loss rate more accurate. Therefore, what we should do is 
identifying and eliminating the main error sources. For the estimation errors of the simple 
algorithm, we think the following factors associated with packet dynamics [12] can 
explain to some extent. 
 Packet reordering: Here packet reordering refers to a phenomenon that an earlier 

sent packet arrives at “P” later than one or more later sent packet(s). In this case, the 
segment arriving later is out-of-order and falls into a hole caused by the segments 
arrived earlier, which fools our algorithm. 

 Repeated packet losses: If a packet is lost multiple times on the network path before 
“P”, our algorithm can only detect up to one time, because in this case, it can only 
detect one data segment falling into the corresponding hole. 

Except the error sources listed above, there must be others. For instance, the entire 
window segments are lost will not cause any visible hole in the TCP data sequence, and it 
typically happens at time when the sending window size is not big. However, as we will 
see, the above two are the major ones. In order to exclude the effect of packet reordering, 
we make use of the information contained in the identification in the IP header 
(hereinafter referred to as IP-Id). To our knowledge, most operating systems increase the 
value of IP-Id by one after completing every packet sending. So if there is a decrease of 
the IP-Id (e.g., in Fig. 2, if the IP-Id of D5 is less than that of D4), we think it is caused by 
packet reordering. In addition, consider the range identified by the IP-Id is 0 to 65535, 
when the number of the data segments in a TCP connection is more than 65536, the IP-Id 
will appear cyclic reuse, which can also cause a decreased IP-Id. Therefore, the 
maximum decreased value is set to handle the IP-Id cyclic reuse. That is if the decreased 
value exceeds a pre-defined threshold (e.g., 50000), the algorithm assumes the IP-Id 
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cyclic reuse has occurred.  
To cope with repeated packet losses, we search for packet losses that loss periods are 1. 

The loss period, defined in RFC3357, refers to the number of packet losses that occur in a 
row. Analyze the packet traces collected by the Flow_Mirror2, we found that roughly 60% 
loss periods in a TCP connection are 1, the repeated packet losses occupied about 5% and 
the number of consecutive packet losses is typically less than 3. Therefore, if M 
represents the number of packet losses that the loss periods are 1, then the algorithm 
assumes the number of repeated packet losses in a TCP connection is: 

Nrepeated = �M ∗
5%

60% + 5%� ∗ (3− 1)                                                                      (7) 

After excluding the effect of the two factors above, the equation (4) is corrected as: 

Nbefore = �Ni

n

i=3

+ Nrepeated                                                                                   (8) 

where, Ni is corrected as: 
Ni

= �1:  ∃ <Sj, Lj, Ij> ∈ Scheck, Sj-1+Lj-1<Sj ∧ Sj-1<Si<Sj ∧ �Ij-1<Ii ∨ Ij-1– Ii≥5000�
0: otherwise

                              (9) 

In order to validate the improved algorithm, a simulation with the same settings was 
performed. The results is also shown in Fig. 4. As can be seen, the relative errors of the 
improved algorithm are controlled within 4% in most cases. Meanwhile, it increases the 
estimation accuracy for both low-loss and high-loss situations. Moreover, the improved 
algorithm has a more stable estimation performance with the increase of the loss rate. All 
these improvements can be mainly attributed to that the rules dealing with packet 
reordering and repeated packet losses reduced the false positives and false negatives, 
respectively. Eventually, the improved AEPLNPbefore is given in Algorithm 1. 

2 The Flow_Mirror is a system that we developed based on TCPDUMP, its client sides periodically perform 
TCP transfers with instances of itself. During the transfers, the system collects traces at two endpoints of a 
TCP connection and store them on the fixed server. Some of the collected data is named “IPTAS TCP Base 
Database” and published on: http://iptas.edu.cn/src/system.php, so anyone is free to reuse them for research 
purposes. 

                                                             

http://iptas.edu.cn/src/system.php


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018               3159 

 

3.2 Packet Loss Estimation for Network Path after “P” 
In this section, the Algorithm for Estimating Packet Losses on Network Path after “P” 
(AEPLNPafter) is introduced. Similarly, AEPLNPafter estimates packet losses also by 
building a series of heuristic rules that aim to accurately reflect the state transitions of the 
state machines in the sender-side and receiver-side caused by packet losses after “P”.  

Given that a packet is lost after “P” and is retransmitted, in this case, both the original 
and retransmitted packets should appear at “P”. For instance, D6 in Fig. 2 is lost on the 
network path after “P”, D7 is its retransmission and appears at “P”. Therefore, it is a 
natural idea that leverage retransmissions at “P” to estimate packet losses on the network 
path after “P”. But unfortunately, the situation is a little more complicated than what we 
have described in Fig. 2. Since the flaw of TCP retransmission mechanisms can cause 
spurious retransmissions in many cases[13][14], a simple statistics of retransmissions at 
“P” will yield an overestimate for packet loss after “P”. Thus, to accurately estimate 
packet losses, we need to develop rules to detect and exclude the spurious 
retransmissions. 
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Although some methods detecting spurious retransmissions were proposed 
[13][14][15][16], but they are not suitable for use at point “P”. For instance, the Eifel 
algorithm detects the spurious retransmissions leveraging TCP timestamp, but not all 
connections enable the TCP timestamp option in actual network. Additionally, obtain 
exact timestamp in the middle of the network (e.g., at boarder of an ISP) is difficult. 
Again, the F-RTO algorithm needs the knowledge about the data segments that have been 
sent within the same window, while it is not available when only using packet traces 
captured at “P”. Hence, how to detect the spurious retransmissions at “P” becomes key to 
our algorithm. If the number of spurious retransmissions in a TCP connection is 
determined, then the number of packet losses on network path after “P” can be simply 
calculated as the number of retransmitted segments minus the number of spurious 
retransmissions: 

Nafter = Nretransmitted − Nspurious                                                                    (10) 
Next, like the literatures [15] and [16], we try to leverage information contained in the 

ACK stream to identify the spurious retransmission, but the specific approach is different. 

    
Fig. 5. Retransmission pattern for SCA after RTO     Fig. 6. Simulation results of PLEAPPafter 

 
In fact, for different TCP acknowledgement mechanism, the form of ACKs is different. 

Accordingly, different rules will be used to recognize the spurious retransmissions in this 
paper. Currently there are three kinds of TCP acknowledgement mechanisms: 
 Standard Cumulative Acknowledgment (SCA): According to RFC 5681, it 

cooperates with the basic TCP congestion control mechanisms to repair the packet 
losses (e.g., Reno, NewReno, BIC and CUBIC, etc.). 
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 Selective Acknowledgment (SACK): It uses the SACK blocks to acknowledge 
out-of-order segments that have arrived at the receiver and not covered by the 
acknowledgement number. The SACK combines with a selective retransmission 
policy at the sender-side to repair the packet losses and reduce the spurious 
retransmissions. More details about SACK are available from RFC2018. 

 Duplicate Selective Acknowledgment (D-SACK): This version, described in 
RFC2883, is an extension to the SACK. It allows the receiver to inform the sender 
about segments that have already arrived more than once. Therefore, we can 
accurately determine a spurious retransmission with an ACK containing D-SACK 
information. 

For SCA, given that total seven segments (S1, S2, S3, S4, S5, S6,and S7) are sent, and only 
S3, S6 and S7 arrive at the receiver. Fig. 5 shows the retransmission process after RTO 
expiration in this case: 

a) The sender retransmits S1, and the receiver sends an ACK for expecting S2 after 
receiving S1. 

b) Upon receiving the ACK for expecting S2, the cwnd (congestion window) at the 
sender-side increases to two. Then, the sender retransmits S2 and S3 even through it 
has no any knowledge about whether S3 is lost or not. 

c) After receiving S2, the receiver sends the ACK for expecting S4 since S3 has already 
arrived at the receiver. When the receiver receives the spurious retransmission of S3, 
the duplicate ACK for expecting S4 is generated and transmitted. 

d) Similarly, when S5, S6,and S7 arrive at the receiver, they will also cause duplicate 
ACKs for expecting S8. 

Inspired by this, the basic principle of our detection rule for SCA is that if the 
retransmission is spurious, the acknowledgements for the original transmission and the 
spurious retransmissions should all appear at “P”. 

The ACK sequence of a TCP connection is described with set Asca={<A1, B1>, …, 
<An, Bn>}, where ∀ i ∊ N, <Ai, Bi> denotes the ith ACK appearing at the capture point, Ai 
denotes the acknowledgement number of <Ai, Bi>. Then Nafter can be calculated as: 

Nafter = Nretransmitted −�Bi

n

i=1

                                                                             (11) 

where Bi denotes the following: 

Bi = �1: ∃Aj ∈ Asca, j<i ∧ Aj=Ai 
0: otherwise

                                                                         (12) 
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  On the other hand, for the duplicate ACK of SCA, we can prove the following: 
Proposition 1. The duplicate ACK is caused by either spurious retransmission or 

packet reordering. 
Proof. In order to let the sender-side sent the data segment D that is suspected to be 

lost as soon as possible and avoid RTO expiration, the fast retransmission requires the 
receiver to immediately generate an ACK for expecting D upon receiving an out-of-order 
data segment. Therefore, if the received data is out-of-order, then a duplicate ACK will be 
generated. In contrary, if the received data is orderly and non-retransimitted, then it will 
cause a new ACK. Else if the received data is orderly and necessary retransmission, it 
will cause a new ACK, and if it is orderly and spurious retransmission, the duplicate 
acknowledgement will be generated. 

Therefore, for SCA, duplicate ACKs can be used to detect spurious retransmissions, 
but need to exclude the effect of packet reordering, i.e., duplicate ACKs caused by packet 
reordering shouldn’t be taken into account. As we know, the essence that packet 
reordering can generate duplicate ACK is fast retransmission mechanism. Again, 
sufficient packet reordering will cause fast retransmission (typically over a three duplicate 
ACKs). Therefore, for a duplicate ACK, if the number of times it appears at the capture 
point is greater than or equal to 4, we assume it is caused by packet reordering. Thus we 
further denote Asca={<A1, B1, N1>, …, <An, Bn, Nn>}, where ∀ i ∊ N, <Ai, Bi, Ni> 
denotes the ith ACK appearing at the capture point and Ni denotes the number of times 
<Ai, Bi, Ni> appears at the capture point. To exclude the effect of packet reordering, Bi is 
corrected as: 

Bi = �1: ∃Aj ∈ Asca, j<i ∧ Aj=Ai ∧ Ni≤3 
0: otherwise

                                                               (13) 

For SACK, with the help of SACK blocks, the TCP sender may not conduct spurious 
retransmission in the case like Fig. 5. However, the spurious retransmissions still exist for 
SACK. For example, the sender always clear the scoreboard of SACK blocks after RTO 
expiration, while the receiver is not able to refill the scoreboard of the sender-side since it 
always only acknowledges the most recently transmitted segments. In this case, the 
sender has no any knowledge about the out-of-order segments that have already reached 
the receiver, which results in inevitable spurious retransmissions. To detect the spurious 
retransmissions for SACK, we reversely analyze the effect of spurious retransmission on 
the receiver, viz., if the retransmission is spurious, the buffer state of the receiver-side 
would not be changed. For SACK, the ACK stream of a TCP connection is described 
with set Asack={<A1, S1, I1>, …, <An, Sn, In>}, where ∀ i ∊ N, <Ai, Si, Ii> denotes the ith 
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ACK appearing at “P”, Ai denotes the acknowledgement number of <Ai, Si, Ii>, Si 
denotes the set of SACK blocks in the ith ACK, and Ii denotes the identification in IP 
header of the ith ACK. Regarding the spurious retransmission for SACK, we can prove 
the followings: 
Proposition 2. ∃ <Ai, Si, Ii> caused by either spurious retransmission or ACK reordering, 
Ai≤MAX(A1,A2, …, Ai-1) ∧ Si ⊂ ∪j<i Sj 
Proof. If the received data is non-retransmitted, then due to the SACK field, no matter the 
received data is orderly or not, a new ACK will be generated. If the received data is 
retransmitted and spurious, then it would not change the buffer state of the receiver-side. 
Thus, the information contained in the ACK caused by this spurious retransmission will 
become redundant compared with that contained in the ACKs having already left the 
receiver. When this ACK arrives at “P” and compared with the ACKs that have already 
reached “P”, the redundant information makes it does not advance in acknowledgement 
number and does not contain new SACK blocks. Else if the the received data is 
retransmitted and non-spurious, then a new ACK will be generated as the buffer state of 
the receiver-side is changed. On the other hand, consider the generated ACK. If it is 
orderly, then the order in which it arrives at the capture point will be consistent with the 
order in which it was sent at the receiver-side. Else if the ACK is out-of-order when 
arriving at “P” (different from packet reordering, here called ACK reordering), in this 
case, when compared with the information contained in the ACKs that were sent later but 
have already arrived at “P” earlier, the information contained in this ACK may become 
redundant or even less.  

As discussed above, spurious retransmission can produce <Ai, Si, Ii> with the 
characteristic of Ai≤MAX(A1,A2, …, Ai-1) ∧ Si ⊂ ∪j<i Sj. On the other hand, we can 
conclude that not all ACKs with this characteristic are caused by spurious retransmissions. 
Therefore, we can leverage this characteristic to detect spurious retransmission for SACK 
but need to exclude the effect of ACK reordering. Faced with this, just like what we have 
done in Section 3.1, the IP-Id is used to exclude the effect of ACK reordering. Concretely, 
we have the following steps: 
Step 1: for ∀<Ai, Si, Ii>, where Ai≤MAX(A1,A2, …, Ai-1) ∧ Si ⊂ ∪j<i Sj, we first make 
Mi=MAX(A1,A2, …, Ai-1); 
Step 2: according the obtained Mi, we search the first i-1 elements in Asack to find <Aj, Sj, 
Ij> where Aj=Mi; 
Step 3: we determine that <Ai, Si, Ii> is caused by spurious retransmission when and only 
when Ii>Ij ∨ Ij – Ii≥5000. 
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The solution described above doesn’t necessarily exactly exclude the effect of ACK 
reordering, but it is expected to limit the error. 

Finally, if the receiver supports D-SACK, it will send an ACK containing DSACK 
blocks for each duplicate data segment. Therefore, AEPLNPafter can use the ACK 
containing DSACK information to accurately determine a spurious retransmission. The 
specific rules recognizing DSACK blocks can reference to RFC2883. 

Likewise, we implemented the algorithm AEPLNPafter and validated it with packet 
traces obtained from simulations. The simulations had the same settings as shown in 
section 3.1, meanwhile we simulated three different types of TCP acknowledgement 
mechanisms, respectively. The results are shown in Fig. 6, for comparison, the results of 
retransmit-based estimation were also plotted.  

As can be seen, the performance of retransmit-based estimations were worst, which 
revealed the flaw of current TCP retransmission mechanisms and the necessity for 
excluding the spurious retransmissions when estimating packet losses on the network path 
after “P”. Additionally, we can also see that the retransmit-based estimation for SACK 
and D-SACK was better than that for SCA. This can be attributed to the SACK field that 
reduced the spurious retransmissions at the sender-side to some extent. For our algorithm, 
compared with the retransmit-based estimation, it observably reduced the estimation 
errors on the whole. Specifically, it achieved optimum performance on D-SACK transfers 
with relative error of less than 10%. Analyze the errors for D-SACK, we found they are 
all belonged to overestimates. This reflected the fact that for D-SACK, the segment 
determined as spurious retransmission does reach the receiver more than once. Therefore, 
it can be inferred that the estimation errors for D-SACK were all caused by the loss of 
ACKs that specify spurious retransmissions. For SCA and SACK, the relative errors were 
also controlled around 10% after excluding the spurious retransmissions. Different from 
D-SACK, for SCA, our algorithm mainly excluded the spurious retransmissions caused 
by slow start strategy after RTO expiration, and the result shows it achieved a good effect. 
Thus, we can conclude that for SCA, most of spurious retransmissions are mainly caused 
by the flaw in slow start strategy after RTO expiration. While for SACK, by leveraging 
the ACKs having characteristic described in step 1, our algorithm also locates the 
majority of spurious retransmissions caused by sender-side’s scoreboard information 
missing. Thus given only the information available from the capture point, AEPLNPafter 
has achieved a good estimation for packet losses happened after the capture point. While 
for the estimation errors of SCA and SACK, we think the following factors can explain in a 
certain extent. 
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 Spurious fast retransmissions: AEPLNPafter can’t deal with the spurious fast 

retransmission caused by sufficient packet reordering. It’s included in Ni and makes Bi 
zero at the same time, which skews our estimation results. 

 Lost ACKs: An ACK is lost in network may cause the corresponding spurious 
retransmission cannot be recognized. 

 Packet/ACK reordering: As we have mentioned, packet/ACK reordering can lead to an 
ACK seems to be caused by spurious retransmission. Although the rule for SCA and the 
IP-Id for SACK were used to exclude its negative effect, but they can only limite the 
error and cannot make our estimate exactly right. 

Eventually, the algorithm AEPLNPafter is given in Algorithm 2. 
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Note: According to our research [17], although the entire border traffic of the monitored 
network JSERNET is captured, but among the network environment of multiple-operators, 
due to the network management capacity of some small access units is limited, the 
misconfiguration will cause asymmetric routing at the border of JSERNET and eventually 
result in small amount of artificial one-way traffic at the edge of the monitored network. 
For one-way traffic, its causes may be benign (unreachable services, misconfiguration, 
etc.) or malicious (attacks). Among them, the malicious is the major and doesn't need to 
be considered when estimating packet losses. For the benign, the ACKs cannot be 
leveraged, so we use the retransmissions at point “P” to estimate packet losses happened 
after “P”. 

4.  Results From JSERNET 

In this section, we apply the proposed method on a massive traffic traces captured from 
the border of a regional academic network JSERNET to analyze its long-term packet 
losses. The traffic traces were captured by the tool WATCHER which we developed and 
maintain, and it was designed to capture all the traffic that crosses the border of 
JSERNET destined to or coming from the Internet. The statistical information of traffic 
traces used for packet loss analysis is shown in Table 1. 
 

Table 1. Traffic traces used for packet loss analysis 

 
 

4.1 Data Sanitization 
For two-way traffic, packets containing source IPs that are not those really assigned to 
their sending host, i.e., spoofed traffic [18], should not be taken into account when 
estimating packet losses. Therefore, we use the methodology in the literature [18] to 
exclude these traffic. It has two steps: firstly, find out the two-way TCP connections; 
secondly, remove connections with too few packets (5 packets) or bytes (80 bytes). For 
one-way traffic, we use the classifier described in the literature [19] to pick out the traffic 
caused by asymmetric routing. 
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Fig. 7. Packet loss status of JSERNET 
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4.2 Results and Analysis 
The results are shown in Fig. 7 (each point represents 10-minute interval). Concretely, in 
Fig. 7 (a), the downlink overall loss rate after “P” is shown. As can be seen from Fig. 7 
(a), the overall loss rate within JSERNET was kept in a normal level on the whole with 
small fluctuations except that of 2014. Analyze the abnormal loss rates in 2014, we found 
that when the abnormal loss rates appeared, the reports for DDOS attacks [20] was 
generated almost simultaneously. Therefore, this indicates that the network congestion 
caused by DDOS attacks may have some relationship with the abnormal loss rates. In 
addition, the downlink overall loss rate before “P” is shown in Fig. 7 (b). The result in 
Fig. 7 (b) is intuitive that the overall loss rate in the outside of JSERNET in 2007 had a 
visible decline compared with that of 2006. The decline can be attributed to the upgrade 
of JSERNET’s backbone bandwidth in January 2006 (from OC-48 to OC-192), and the 
declined packet loss rates indicate that this upgrade made the original congestion line 
become smooth. 

Finally, Fig. 7 (c) ~ (h) shows the overall loss rates from Asia and other continents to 
JSERNET. In Fig. 7 (c) ~ (h), we can see that except 2011, the overall loss rates from 
Europe and North America to JSERNET were lower than other continents and even lower 
than Asia. This, we believe, reflected the fact that Europe and North America are the 
current internet hubs. Comparing with other continents, the good network infrastructure 
and perfect connectivity within these two regions produced the lower loss rates. On the 
other hand, Fig. 7 (b) shows the overall loss rate in the outside internet in 2011 was 
remained at a normal level on the whole, but the overall loss rates for North America, 
South America and Europe in 2011 increased instead. This is due to that the data for 2011 
were captured during the earthquake happened in eastern seas of Japan, and these data 
were specifically picked out to study the impact of the earthquake. As we all know, this 
earthquake caused huge damage to the undersea cable, which resulted in large-scale 
routing revocation and routing table reconstruction. See Fig. 7 (e) ~ (g), from the 
increased loss rates in 2011, we can infer that this earthquake mainly led to the 
interruption and congestion of some connections between JSERNET and North America, 
South America and Europe. 
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5. Conclution 

In order to distinguish and evaluate the overall packet loss within an ISP’s management 
domain and that in the outside Internet, Intra_Path_Loss and Inter_Path_Loss are defined 
in this paper. Correspondingly, their estimation algorithms were presented and rigorously 
validated with simulations. Finally, the results from a regional academic network 
JSERNET demonstrated that the overall packet losses defined and estimated in this paper 
can provide the operators with some valuable information to help them precisely grasp 
the overall performance of network paths and narrow down the range of network 
anomalies. 

Acknowledgements 

This paper was sponsored by the National Grand Fundamental Research 973 program of 
China (2009CB320505); the National Nature Science Foundation of China (60973123). 
 

References 

[1] Feng, B., Zhou, H., Zhang, M., and Zhang, H, “Cache-Filter: A Cache Permission Policy for 
Information-Centric Networking,” KSII Transactions on Internet and Information Systems 
(TIIS), vol.9, no.12, pp. 4912-4933, December, 2015. Article (CrossRef Link). 

[2] Zhou Liang, “On data-driven delay estimation for media cloud,” IEEE Transactions on 
Multimedia, vol.18, no.5, pp. 905-915, May, 2016. Article (CrossRefLink).  

[3] Zhou, Liang, “QoE-driven delay announcement for cloud mobile media,” IEEE Transactions 
on Circuits and Systems for Video Technology, vol.27, no.1, pp. 84-94, January, 2017.  
Article (CrossRefLink). 

[4] Madhyastha, H. V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy, A., & 
Venkataramani, A, “iPlane: An information plane for distributed services,” in proc. of the 7th 
symposium on Operating systems design and implementation, pp. 367-380, November, 2006. 
Article (CrossRefLink). 

[5] Friedl, A., Ubik, S., Kapravelos, A., Polychronakis, M., & Markatos, E. P, “Realistic passive 
packet loss measurement for high-speed networks,” in proc. of International Workshop on 
Traffic Monitoring and Analysis, pp. 1-7, May, 2009. Article (CrossRefLink). 

[6] Basso, S., Meo, M., Servetti, A., & De Martin, J. C, “Estimating packet loss rate in the access 
through application-level measurements,” in proc. of the 2012 ACM SIGCOMM workshop on 
Measurements up the stack, pp. 7-12, August, 2012. Article (CrossRefLink). 

http://dx.doi.org/doi:10.3837/tiis.2015.12.010
https://doi.org/10.1109/TMM.2016.2537782
http://dx.doi.org/doi:10.1109/TCSVT.2016.2539698
https://dl.acm.org/citation.cfm?id=1298490
http://dx.doi.org/doi:10.1007/978-3-642-01645-5_1
http://dx.doi.org/doi:10.1145/2342541.2342545


3170                           Haoliang Lan et al.: Passive Overall Packet Loss Estimation at the Border of an ISP 

[7] Basso, Simone, Michela Meo, and Juan Carlos De Martin, “Strengthening measurements 
from the edges: application-level packet loss rate estimation,” ACM SIGCOMM Computer 
Communication Review, vol. 43, no. 3, pp. 45-51, July, 2013. Article (CrossRefLink). 

[8] Silveira, Fernando, and Edmundo de Souza e Silva, “Predicting packet loss statistics with 
hidden Markov models for FEC control,” Computer Networks, vol. 56, no. 2, pp. 628-641, 
February, 2012. Article (CrossRefLink). 

[9] Hu, Zhiguo and Qiqiang Zhang, “A new approach for packet loss measurement of video 
streaming and its application,” Multimedia Tools and Applications, pp. 1-20, May, 2016. 
Article (CrossRefLink). 

[10] Nguyen, Hung X., and Matthew Roughan, “Rigorous statistical analysis of internet loss 
measurements,” IEEE/ACM Transactions on Networking (TON), vol. 21, no. 3, pp. 734-745, 
June, 2013. Article (CrossRefLink). 

[11] NS-2 – The Network Simulator version 2.34, 2012, Article (CrossRefLink). 
[12] Paxson, Vern, “End-to-End Internet Packet Dynamics,” ACM SIGCOMM Computer 

Communication Review, vol.27, no.4, pp.139-152, September, 1997. Article (CrossRefLink). 
[13] Ludwig R, Katz R H, “The Eifel algorithm: making TCP robust against spurious 

retransmissions,” ACM SIGCOMM Computer Communication Review, vol. 30, no. 1, pp. 
30-36, January, 2000. Article (CrossRefLink). 

[14] Sarolahti, P., Kojo, M., Yamamoto, K., Hata, M, “An algorithm for detecting spurious 
retransmission timeouts with TCP,” RFC 5682, IETF, September, 2009.  
Article (CrossRefLink). 

[15] Rani, SV Jansi, and P. Narayanasamy, "Enhancing TCP Performance by detecting spurious 
RTO in Wireless Network," International Journal of Applied Engineering Research, vol.11, 
no.4, pp. 2651-2657, March, 2016. Article (CrossRefLink). 

[16] Priya, S. Sathya, and K. Murugan, “Improving TCP Performance in Wireless Networks by 
Detection and Avoidance of Spurious Retransmission Timeouts,” Journal of Information 
Science and Engineering, vol. 31, no.2, pp. 711-726, March, 2015. Article (CrossRefLink). 

[17] Lan H, Ding W, Xia Z, “Asymmetric routing detection based on flow records,” Journal on 
Communications, vol. 35, no. Z1, PP. 98-102, November, 2014. Article (CrossRefLink). 

[18] Dainotti A, Benson K, King A, et al, “Estimating internet address space usage through 
passive measurements,” ACM SIGCOMM Computer Communication Review, vol. 44, no.1, 
pp. 42-49, January, 2014. Article (CrossRefLink). 

[19] Glatz E, Dimitropoulos X, “Classifying internet one-way traffic,” in Proc. of the 2012 ACM 
conference on Internet measurement conference, pp. 37-50, November, 2012.  
Article (CrossRefLink). 

http://dx.doi.org/doi:10.1145/2500098.2500104
http://dx.doi.org/doi:10.1145/1328690.1328698
http://dx.doi.org/doi:10.1007/s11042-016-3566-0
http://dx.doi.org/doi:10.1109/TNET.2012.2207915
http://www.isi.edu/nsnam/ns
http://dx.doi.org/doi:10.1109/90.779192
http://dx.doi.org/doi:10.1145/505688.505692
http://dx.doi.org/10.17487/RFC5682
http://www.ripublication.com/ijaer16/ijaerv11n4_82.pdf
http://dx.doi.org/doi:10.6688/JISE.2015.31.2.19
https://www.researchgate.net/publication/289679918_Asymmetric_routing_detection_based_on_flow_records
http://dx.doi.org/doi:10.1145/2567561.2567568
http://dx.doi.org/doi:10.1145/2398776.2398781


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018               3171 

[20] Miao L, Ding W, Gong J, “A real-time method for detecting internet-wide SYN flooding 
attacks,”, in Proc. of Local and Metropolitan Area Networks (LANMAN), 2015 IEEE 
International Workshop on. IEEE, pp. 1-6, April, 2015. Article (CrossRefLink). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Haoliang Lan is a Ph.D candidate in school of computer science and engineering of 
Southeast University. His  major research interests include network measurement, 
network management, and network security. 
 
 
 
 
 

 
 
Wei Ding received B.S degree in the computer soft from Nanjing University in 1982. 
She received Ph.D degree from Southeast University in 1995. Nowadays she is a 
professor of Southeast University. Her major research interests include high speed 
communications, network management, and network security. 
 
 
 
 
 

 
YuMei Zhang is a M.S candidate in school of big data and information engineering 
of Guizhou University. Her major research interests include network measurement and 
network management. 

http://dx.doi.org/doi:10.1109/LANMAN.2015.7114740

