DOI QR코드

DOI QR Code

Synthesis and Properties of Sulfonated Poly (Arylene Ether Sulfone) Block Copolymers with Naphthalene Moiety for Polymer Electrolyte Fuel Cells

고분자 전해질형 연료전지용 나프탈렌 부분을 갖는 술폰화된 폴리(아릴렌 이써 설폰) 블록 공중합체의 합성과 특성연구

  • HAN, DASOM (Department of Energy Storage.Conversion Engineering of Graduate School and Hydrogen and Fuel Cell Research Center, Chonbuk National University) ;
  • YOO, DONG JIN (Department of Energy Storage.Conversion Engineering of Graduate School and Hydrogen and Fuel Cell Research Center, Chonbuk National University)
  • 한다솜 (전북대학교 대학원 공과대학교 에너지저장.변환공학과 수소.연료전지 연구센터) ;
  • 유동진 (전북대학교 대학원 공과대학교 에너지저장.변환공학과 수소.연료전지 연구센터)
  • Received : 2018.05.05
  • Accepted : 2018.08.31
  • Published : 2018.08.31

Abstract

In this study, sulfonated PAES block copolymers have been synthesized via nucleophilic substitution reaction. Hydrophobic oligomer was prepared using 2,6-dihydroxynaphthalene and bis(4-chlorophenyl) sulfone, whereas hydrophilic oligomer was prepared using sulfonated bis(4-chlorophenyl) sulfone and bis(4-hydroxyphenyl) sulfone. The chemical structure of polymers was analyzed by $^1H$ NMR, FT-IR and GPC. The thermal properties of polymers were measured by TGA and DSC. The oxidative stability of membranes was investigated by Fenton's test. Furthermore, the proton conductivity of membrane was found to be 26 mS/cm at $90^{\circ}C$. All physiochemical properties suggest that fabricated membrane have a great potential for applications in PEMFC.

Keywords

References

  1. N. Y. Amponsah, M. Troldborg, B. Kington, I. Aalders, R. L. Hough, "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations", Renew. Sust. Energ. Rev., Vol. 39. 2014, pp. 461-475. https://doi.org/10.1016/j.rser.2014.07.087
  2. J. Park, K. Enomoto, T. Yamashita, and Y. Takagi, "Polymerization Mechanism for Radiation- Induced Grafting of Styrene into Alicyclic Polyimide Films for Preparation of Polymer Electrolyte Membranes", J. Membr. Sci., Vol. 438, No. 2013, pp. 1-7. https://doi.org/10.1016/j.memsci.2013.03.007
  3. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, "Alternative Polymer System for Proton Exchange Membranes (PEMs)", Chem. Rev., Vol. 104, No. 10, 2004, pp. 4587-4612. https://doi.org/10.1021/cr020711a
  4. M. Rikukawa and K. Sanui, "Proton-Conducting Polymer Electrolyte Membranes Based on Hydrocarbon Polymers", Polym. Sci., Vol. 25, No. 10, 2000, pp. 1463-1502.
  5. A. R. Kim, M. Vinothkannan, and D. J. Yoo, "Artificially Designed, Low Humidifying Organic-Inorganic (SFBC-50/$FSiO_2$) Composite Membrane for Electrolyte Applications of Fuel Cells", Composites Part B, Vol. 130, 2017, pp. 103-118. https://doi.org/10.1016/j.compositesb.2017.07.042
  6. Q. Li, R. He, Q. O. Jensen, and N. J. Bjerrum, "Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above $100^{\circ}C", Chem. Mater, Vol. 15, 2003, pp. 4896-4915. https://doi.org/10.1021/cm0310519
  7. K. J. Oh, K. Ketpang, H. S. Kim, and S. Shanmugam, "Synthesis of Sulfonated Poly(arylene ether ketone) Block Copolymers for Proton Exchange Membrane Fuel Cells", Vol. 507, No. 1, J. Membr. Sci., 2016, pp. 135-142. https://doi.org/10.1016/j.memsci.2016.02.027
  8. K. H. Lee, J. Y. Chu, A. R. Kim, K. S. Nahm, C. J. Kim, and D. J. Yoo, "Densely Sulfonated Block Copolymer Composite Membranes Containing Phosphotungstic Acid for Fuel Cell Membranes", J. Membr. Sci., Vol. 434, 2013, pp. 35-43. https://doi.org/10.1016/j.memsci.2013.01.037
  9. J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synthesis and Characterization of Partially Fluorinated Sulfonated Poly(arylene biphenylsulfone ketone) Block Copolymers Containing 6F-BPA and Perfluorobiphenylene Units", Int. J. Hydrogen Energ., Vol. 38, No. 14, 2013, pp. 6268-6274. https://doi.org/10.1016/j.ijhydene.2012.11.144
  10. K. H. Lee, J. Y. Chu, A. R. Kim, K. S. Nahm, and D. J. Yoo, "Highly Sulfonated Poly(arylene biphenylsulfone ketone) Block Copolymers Prepared via Post-Sulfonation for Proton Conducting Electrolyte Membranes", Bull. Korean Chem. Soc., Vol. 34, No. 6, 2014, pp. 1763-1770. https://doi.org/10.5012/bkcs.2013.34.6.1763
  11. M. Ueda, H. Toyota, T. Ouchi, J. I. Sugiyama, K. Yonetake, T. Masuko, and T. Teramoto, "Synthesis and Characterization of Aromatic Poly (ether Sulfone)s Containing Pendant Sodium Sulfonate Groups", J. Polym. Sci. Part A: Polym. Chem., Vol. 31, No. 4, 1993, pp. 853-858.
  12. A. R. Kim, "Synthesis and Characterization of Fluorinated Polybenzimidazole Proton Exchange Membranes for Fuel Cell", Trans. of the Korean Hydrogen and New Energy Society, Vol. 28, No. 1, 2017, pp. 24-29. https://doi.org/10.7316/KHNES.2017.28.1.24
  13. A. R. Kim, "Preparation and Characterization of Hybrid Membrane for Block Copolymer Containing Diphenyl Unit Increasing Cationic Conductivity for Fuel Cells", Trans. of the Korean Hydrogen and New Energy Society, Vol. 28, No. 5, 2017, pp. 465-470. https://doi.org/10.7316/KHNES.2017.28.5.465
  14. B. Wang, L. Hong, Y. Li, L. Zhao, Y. Wei, C. Zhao, and H. Na, "Considerations of the Effects of Naphthalene Moieties on the Design of Proton-Conductive Poly(arylene ether ketone) Membranes for Direct Methanol Fuel Cells", ACS Appl. Mater. Interfaces, Vol. 8, No. 36, 2016, pp. 24079-24088. https://doi.org/10.1021/acsami.6b06983
  15. P. X. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, and S. Kaliaguine, "Sulfonated Poly(aryl ether ketone)s Containing Naphthalene Moieties Obtained by Direct Copolymerization as Novel Polymers for Proton Exchange Membranes", J. Polym. Sci. Part A: Polym. Chem., Vol. 42, No. 12, 2004, pp. 2866-2876. https://doi.org/10.1002/pola.20152
  16. D. Sek, A. Wanic, and E. Schab-Balcerzak, "Investigation of Polyimides Containing Naphthalene Units. II. Model Compounds Synthesis", J. Polym. Sci. Part A: Polym. Chem., Vol. 33, No. 3, 1995, pp. 547-554. https://doi.org/10.1002/pola.1995.080330321
  17. B. Kim, R. Kannan, K. S. Nahm, and D. J. Yoo, "Development and Characterizations of Highly-Conducting Nonfluorinated Di- and Tri-Block Copolymers for Polymer Electrolyte Membranes", J. Disper. Sci. Technol., Vol. 37, No. 9, 2016, pp. 1315-1323. https://doi.org/10.1080/01932691.2015.1092090
  18. M. Han, G. Zhang, M. Li, S. Wang, Z. Liu, H. Li, Y. Zhang, D. Xu, J. Wang, J. Ni, and H. Na, "Sulfonated Poly(ether ether ketone)/Polybenzimidazole oligomer/Epoxy Resin Composite Membranes In situ Polymerization for Direct Methanol Fuel Cell Usages", J. Power Sources, Vol. 196, No. 23, 2011, pp. 9916-9923. https://doi.org/10.1016/j.jpowsour.2011.08.049
  19. G. Gnana kumar, A. R. Kim, K. S. Nahm, and D. J. Yoo, "High Proton Conductivity and Low Fuel Crossover of Polyvinylidene Fluoride-Hexafluoro Propylene-Silica Sulfuric Acid Composite Membranes for Direct Methanol Fuel Cells", Curr. Appl. Phys., Vol. 11, No. 3, 2011, pp. 896-902. https://doi.org/10.1016/j.cap.2010.12.015
  20. G. G. Kumar, A. R. Kim, K. S. Nahm, D. J. Yoo, and R. Elizabeth, "High Ion and Lower Molecular Transportation of the Poly Vinylidene Fluoride-Hexa Fluoro Propylene Hybrid Membranes for the High Temperature and Lower Humidity Direct Methanol Fuel Cell Applications", J. Power Sources, Vol. 195, No. 18, 2010, pp. 5922-5928. https://doi.org/10.1016/j.jpowsour.2009.11.021
  21. M. L. Vona, D. Marani, A. D. Epifanio, S. Licoccia, I. Beurroies, R. Denoyel, and P. Knauth, "Hybrid Materials for Polymer Electrolyte Membrane Fuel Cells: Water Uptake, Mechanical and Transport Properties". J. Membr. Sci., Vol. 304, 2007, pp. 76-81. https://doi.org/10.1016/j.memsci.2007.07.013
  22. Y. Zhao and J. Yin, "Synthesis and Evaluation of All-Block-Sulfonated Copolymers as Proton Exchange Membranes for Fuel Cell Application", J. Membr. Sci., Vol. 351, 2010, pp. 28-35. https://doi.org/10.1016/j.memsci.2010.01.024
  23. J. H. Lee, J. S. Lee, T. Kuila, N. H. Kim, and D. Jung, "Effects of hybrid carbon fillers of polymer composite bipolar plates on the performance of direct methanol fuel cells", Composites Part B, Vol. 51, 2013, pp. 98-105. https://doi.org/10.1016/j.compositesb.2013.03.004