DOI QR코드

DOI QR Code

Inter-Vendor and Inter-Session Reliability of Diffusion Tensor Imaging: Implications for Multicenter Clinical Imaging Studies

  • Min, Jeeyoung (Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine) ;
  • Park, Mina (Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine) ;
  • Choi, Jin Woo (Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine) ;
  • Jahng, Geon-Ho (Department of Radiology, Kyunghee University) ;
  • Moon, Won-Jin (Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine)
  • Received : 2017.08.25
  • Accepted : 2017.12.11
  • Published : 2018.08.01

Abstract

Objective: To evaluate the inter-vendor and inter-session reliability of diffusion tensor imaging (DTI) and relevant parameters. Materials and Methods: This prospective study included 10 healthy subjects (5 women and 5 men; age range, 25-33 years). Each subject was scanned twice using 3T magnetic resonance scanners from three different vendors at two different sites. A voxel-wise statistical analysis of diffusion data was performed using Tract-Based Spatial Statistics. Fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) values were calculated for each brain voxel using FMRIB's Diffusion Toolbox. Results: A repeated measures analysis of variance revealed that there were no significant differences in FA values across the vendors or between sessions; however, there were significant differences in MD values between the vendors (p = 0.020). Although there were no significant differences in inter-session MD and inter-session/inter-vendor RD values, a significant group x factor interaction revealed differences in MD and RD values between the 1st and 2nd sessions conducted by the vendors (p = 0.004 and 0.006, respectively). Conclusion: Although FA values exhibited good inter-vendor and inter-session reliability, MD and RD values did not show consistent results. Researchers using DTI should be aware of these limitations, especially when implementing DTI in multicenter studies.

Keywords

Acknowledgement

Supported by : Ministry of Health & Welfare, National Research Foundation of Korea (NRF)

References

  1. Oppenheim C, Rodrigo S, Poupon C, Dumas de la Roque A, Naggara O, Meder JF, et al. [Diffusion tensor MR imaging of the brain. Clinical applications]. J Radiol 2004;85:287-296 https://doi.org/10.1016/S0221-0363(04)97580-4
  2. Minati L, Grisoli M, Bruzzone MG. MR spectroscopy, functional MRI, and diffusion-tensor imaging in the aging brain: a conceptual review. J Geriatr Psychiatry Neurol 2007;20:3-21 https://doi.org/10.1177/0891988706297089
  3. Nucifora PG, Verma R, Lee SK, Melhem ER. Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 2007;245:367-384 https://doi.org/10.1148/radiol.2452060445
  4. Jovicich J, Marizzoni M, Bosch B, Bartres-Faz D, Arnold J, Benninghoff J, et al. Multisite longitudinal reliability of tractbased spatial statistics in diffusion tensor imaging of healthy elderly subjects. Neuroimage 2014;101:390-403 https://doi.org/10.1016/j.neuroimage.2014.06.075
  5. Lagana M, Rovaris M, Ceccarelli A, Venturelli C, Marini S, Baselli G. DTI parameter optimisation for acquisition at 1.5T: SNR analysis and clinical application. Comput Intell Neurosci 2010:254032
  6. Teipel SJ, Reuter S, Stieltjes B, Acosta-Cabronero J, Ernemann U, Fellgiebel A, et al. Multicenter stability of diffusion tensor imaging measures: a European clinical and physical phantom study. Psychiatry Res 2011;194:363-371 https://doi.org/10.1016/j.pscychresns.2011.05.012
  7. Grech-Sollars M, Hales PW, Miyazaki K, Raschke F, Rodriguez D, Wilson M, et al. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain. MR Biomed 2015;28:468-485
  8. Vollmar C, O'Muircheartaigh J, Barker GJ, Symms MR, Thompson P, Kumari V, et al. Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. Neuroimage 2010;51:1384-1394 https://doi.org/10.1016/j.neuroimage.2010.03.046
  9. Tofts PS, Collins DJ. Multicentre imaging measurements for oncology and in the brain. Br J Radiol 2011;84 Spec No 2:S213-S226 https://doi.org/10.1259/bjr/74316620
  10. Kamagata K, Shimoji K, Hori M, Nishikori A, Tsuruta K, Yoshida M, et al. Intersite reliability of diffusion tensor imaging on two 3T scanners. Magn Reson Med Sci 2015;14:227-233 https://doi.org/10.2463/mrms.2014-0077
  11. Pagani E, Hirsch JG, Pouwels PJ, Horsfield MA, Perego E, Gass A, et al. Intercenter differences in diffusion tensor MRI acquisition. J Magn Reson Imaging 2010;31:1458-1468 https://doi.org/10.1002/jmri.22186
  12. Fox RJ, Sakaie K, Lee JC, Debbins JP, Liu Y, Arnold DL, et al. A validation study of multicenter diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values. AJNR Am J Neuroradiol 2012;33:695-700 https://doi.org/10.3174/ajnr.A2844
  13. Magnotta VA, Matsui JT, Liu D, Johnson HJ, Long JD, Bolster BD Jr, et al. Multicenter reliability of diffusion tensor imaging. Brain Connect 2012;2:345-355 https://doi.org/10.1089/brain.2012.0112
  14. Villemagne VL, Kim SY, Rowe CC, Iwatsubo T. Imago mundi, imago AD, imago ADNI. Alzheimers Res Ther 2014;6:62 https://doi.org/10.1186/s13195-014-0062-5
  15. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143-155 https://doi.org/10.1002/hbm.10062
  16. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 2003;50:1077-1088 https://doi.org/10.1002/mrm.10609
  17. Jones RG, Payne RB. Clinical investigation and statistics in laboratory medicine. London: ACB Venture Publications, 1997
  18. Anderson AW. Theoretical analysis of the effects of noise on diffusion tensor imaging. Magn Reson Med 2001;46:1174-1188 https://doi.org/10.1002/mrm.1315
  19. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006;31:1487-1505 https://doi.org/10.1016/j.neuroimage.2006.02.024
  20. Smith SM, Johansen-Berg H, Jenkinson M, Rueckert D, Nichols TE, Miller KL, et al. Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nat Protoc 2007;2:499-503 https://doi.org/10.1038/nprot.2007.45

Cited by

  1. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  2. Thyroid-Associated Orbitopathy: Evaluating Microstructural Changes of Extraocular Muscles and Optic Nerves Using Readout-Segmented Echo-Planar Imaging-Based Diffusion Tensor Imaging vol.21, pp.3, 2018, https://doi.org/10.3348/kjr.2019.0053
  3. Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow vol.242, pp.None, 2018, https://doi.org/10.1016/j.neuroimage.2021.118451