DOI QR코드

DOI QR Code

Comparison between Three-Dimensional Navigator-Gated Whole-Heart MRI and Two-Dimensional Cine MRI in Quantifying Ventricular Volumes

  • Goo, Hyun Woo (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center)
  • Received : 2017.08.02
  • Accepted : 2018.01.19
  • Published : 2018.08.01

Abstract

Objective: To test whether the method utilizing three-dimensional (3D) whole-heart MRI has an additional benefit over that utilizing conventional two-dimensional (2D) cine MRI in quantifying ventricular volumes. Materials and Methods: In 110 patients with congenital heart disease, a navigator-gated, 3D whole-heart MRI during end-systole (ES) and end-diastole (ED), 2D short-axis cine MRI, and phase contrast MRI of the great arteries were acquired. Ventricular volumes were measured by using a 3D threshold-based segmentation for 3D whole-heart MRI and by using a simplified contouring for 2D cine MRI. The cardiac trigger delays of 3D whole-heart MRI were compared with those of a 2D cine MRI. The stroke volumes calculated from the ventricular volumes were compared with the arterial flow volumes, measured by phase contrast MRI. Results: The ES and ED trigger delays of whole-heart MRI were significantly less than cine MRI for both the left ventricle ($-16.8{\pm}35.9ms$ for ES, $-59.0{\pm}90.4ms$ for ED; p < 0.001) and the right ventricle ($-58.8{\pm}30.6ms$ for ES, $-104.9{\pm}92.7ms$ for ED; p < 0.001). Compared with the arterial flow volumes, 2D cine MRI significantly overestimated the left ventricular stroke volumes ($8.7{\pm}8.9mL$, p < 0.001) and the 3D whole-heart MRI significantly underestimated the right ventricular stroke volumes ($-22.7{\pm}22.9mL$, p < 0.001). Conclusion: Three-dimensional whole-heart MRI is often subject to early timing of the ED phase, potentially leading to the underestimation of the right ventricular stroke volumes.

Keywords

References

  1. Pattynama PM, Lamb HJ, van der Velde EA, van der Wall EE, de Roos A. Left ventricular measurements with cine and spinecho MR imaging: a study of reproducibility with variance component analysis. Radiology 1993;187:261-268 https://doi.org/10.1148/radiology.187.1.8451425
  2. Gnanappa GK, Rashid I, Celermajer D, Ayer J, Puranik R. Reproducibility of cardiac magnetic resonance imaging (CMRI)-derived right ventricular parameters in repaired tetralogy of Fallot (ToF). Heart Lung Circ 2018;27:381-385 https://doi.org/10.1016/j.hlc.2017.04.017
  3. van Ooijen PM, de Jonge GJ, Oudkerk M. Informatics in radiology: postprocessing pitfalls in using CT for automatic and semiautomatic determination of global left ventricular function. Radiographics 2012;32:589-599 https://doi.org/10.1148/rg.322115058
  4. Petitjean C, Dacher JN. A review of segmentation methods in short axis cardiac MR images. Med Image Anal 2011;15:169-184 https://doi.org/10.1016/j.media.2010.12.004
  5. Greil GF, Boettger T, Germann S, Klumpp B, Baltes C, Kozerke S, et al. Quantitative assessment of ventricular function using three-dimensional SSFP magnetic resonance angiography. J Magn Reson Imaging 2007;26:288-295 https://doi.org/10.1002/jmri.20967
  6. Uribe S, Tangchaoren T, Parish V, Wolf I, Razavi R, Greil G, et al. Volumetric cardiac quantification by using 3D dual-phase whole-heart MR imaging. Radiology 2008;248:606-614 https://doi.org/10.1148/radiol.2482071568
  7. Delgado JA, Abad P, Rascovsky S, Calvo V, Castrillon G, Greil G, et al. Assessment of cardiac volumes using an isotropic whole-heart dual cardiac phase sequence in pediatric patients. J Magn Reson Imaging 2014;39:708-716 https://doi.org/10.1002/jmri.24203
  8. Codella NC, Weinsaft JW, Cham MD, Janik M, Prince MR, Wang Y. Left ventricle: automated segmentation by using myocardial effusion threshold reduction and intravoxel computation at MR imaging. Radiology 2008;248:1004-1012 https://doi.org/10.1148/radiol.2482072016
  9. Nassenstein K, de Greiff A, Hunold P. MR evaluation of left ventricular volumes and function: threshold-based 3D segmentation versus short-axis planimetry. Invest Radiol 2009;44:635-640 https://doi.org/10.1097/RLI.0b013e3181a9aaaf
  10. Sheehan FH, Kilner PJ, Sahn DJ, Vick GW 3rd, Stout KK, Ge S, et al. Accuracy of knowledge-based reconstruction for measurement of right ventricular volume and function in patients with tetralogy of Fallot. Am J Cardiol 2010;105:993-999 https://doi.org/10.1016/j.amjcard.2009.11.032
  11. Chuang ML, Gona P, Hautvast GL, Salton CJ, Blease SJ, Yeon SB, et al. Correlation of trabeculae and papillary muscles with clinical and cardiac characteristics and impact on CMR measures of LV anatomy and function. JACC Cardiovasc Imaging 2012;5:1115-1123 https://doi.org/10.1016/j.jcmg.2012.05.015
  12. Jaspers K, Freling HG, van Wijk K, Romijn EI, Greuter MJ, Willems TP. Improving the reproducibility of MR-derived left ventricular volume and function measurements with a semiautomatic threshold-based segmentation algorithm. Int J Cardiovasc Imaging 2013;29:617-623 https://doi.org/10.1007/s10554-012-0130-5
  13. Freling HG, van Wijk K, Jaspers K, Pieper PG, Vermeulen KM, van Swieten JM, et al. Impact of right ventricular endocardial trabeculae on volumes and function assessed by CMR in patients with tetralogy of Fallot. Int J Cardiovasc Imaging 2013;29:625-631 https://doi.org/10.1007/s10554-012-0112-7
  14. Miller CA, Jordan P, Borg A, Argyle R, Clark D, Pearce K, et al. Quantification of left ventricular indices from SSFP cine imaging: impact of real-world variability in analysis methodology and utility of geometric modeling. J Magn Reson Imaging 2013;37:1213-1222 https://doi.org/10.1002/jmri.23892
  15. Varga-Szemes A, Muscogiuri G, Schoepf UJ, Wichmann JL, Suranyi P, De Cecco CN, et al. Clinical feasibility of a myocardial signal intensity threshold-based semi-automated cardiac magnetic resonance segmentation method. Eur Radiol 2016;26:1503-1511 https://doi.org/10.1007/s00330-015-3952-4
  16. Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R, et al. Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc Imaging 2010;3:10-18 https://doi.org/10.1016/j.jcmg.2009.09.017
  17. Koch K, Oellig F, Oberholzer K, Bender P, Kunz P, Mildenberger P, et al. Assessment of right ventricular function by 16-detector-row CT: comparison with magnetic resonance imaging. Eur Radiol 2005;15:312-318 https://doi.org/10.1007/s00330-004-2543-6
  18. Juergens KU, Seifarth H, Range F, Wienbeck S, Wenker M, Heindel W, et al. Automated threshold-based 3D segmentation versus short-axis planimetry for assessment of global left ventricular function with dual-source MDCT. AJR Am J Roentgenol 2008;190:308-314 https://doi.org/10.2214/AJR.07.2283
  19. de Jonge GJ, van der Vleuten PA, Overbosch J, Lubbers DD, Jansen-van der Weide MC, Zijlstra F, et al. Semi-automatic measurement of left ventricular function on dual source computed tomography using five different software tools in comparison with magnetic resonance imaging. Eur J Radiol 2011;80:755-766 https://doi.org/10.1016/j.ejrad.2010.10.002
  20. Goo HW, Park SH. Semiautomatic three-dimensional CT ventricular volumetry in patients with congenital heart disease: agreement between two methods with different user interaction. Int J Cardiovasc Imaging 2015;31 Suppl 2:223-232 https://doi.org/10.1007/s10554-015-0751-6
  21. Goo HW, Yang DH, Hong SJ, Yu J, Kim BJ, Seo JB, et al. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results. Pediatr Radiol 2010;40:1490-1497 https://doi.org/10.1007/s00247-010-1645-3
  22. Lee VS, Spritzer CE, Carroll BA, Pool LG, Bernstein MA, Heinle SK, et al. Flow quantification using fast cine phase-contrast MR imaging, conventional cine phase-contrast MR imaging, and Doppler sonography: in vitro and in vivo validation. AJR Am J Roentgenol 1997;169:1125-1131 https://doi.org/10.2214/ajr.169.4.9308476
  23. Goo HW, Al-Otay A, Grosse-Wortmann L, Wu S, Macgowan CK, Yoo SJ. Phase-contrast magnetic resonance quantification of normal pulmonary venous return. J Magn Reson Imaging 2009;29:588-594 https://doi.org/10.1002/jmri.21691
  24. Vincenti G, Monney P, Chaptinel J, Rutz T, Coppo S, Zenge MO, et al. Compressed sensing single-breath-hold CMR for fast quantification of LV function, volumes, and mass. JACC Cardiovasc Imaging 2014;7:882-892 https://doi.org/10.1016/j.jcmg.2014.04.016
  25. Codella NC, Lee HY, Fieno DS, Chen DW, Hurtado-Rua S, Kochar M, et al. Improved left ventricular mass quantification with partial voxel interpolation: in vivo and necropsy validation of a novel cardiac MRI segmentation algorithm. Circ Cardiovasc Imaging 2012;5:137-146 https://doi.org/10.1161/CIRCIMAGING.111.966754
  26. Kido T, Kido T, Nakamura M, Watanabe K, Schmidt M, Forman C, et al. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold. J Cardiovasc Magn Reson 2016;18:50 https://doi.org/10.1186/s12968-016-0271-0
  27. Krieger EV, Clair M, Opotowsky AR, Landzberg MJ, Rhodes J, Powell AJ, et al. Correlation of exercise response in repaired coarctation of the aorta to left ventricular mass and geometry. Am J Cardiol 2013;111:406-411 https://doi.org/10.1016/j.amjcard.2012.09.037
  28. Lu JC, Christensen JT, Yu S, Donohue JE, Ghadimi Mahani M, Agarwal PP, et al. Relation of right ventricular mass and volume to functional health status in repaired tetralogy of Fallot. Am J Cardiol 2014;114:1896-1901 https://doi.org/10.1016/j.amjcard.2014.09.027

Cited by

  1. Semiautomatic Three-Dimensional Threshold-Based Cardiac Computed Tomography Ventricular Volumetry in Repaired Tetralogy of Fallot: Comparison with Cardiac Magnetic Resonance Imaging vol.20, pp.1, 2019, https://doi.org/10.3348/kjr.2018.0237
  2. Technical feasibility of semiautomatic three-dimensional threshold-based cardiac computed tomography quantification of left ventricular mass vol.49, pp.3, 2018, https://doi.org/10.1007/s00247-018-4303-9
  3. Volumetric Severity Assessment of Ebstein Anomaly Using Three-Dimensional Cardiac CT: A Feasibility Study vol.3, pp.3, 2018, https://doi.org/10.22468/cvia.2019.00052
  4. Guideline for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 1: Standardized Protocol vol.3, pp.3, 2018, https://doi.org/10.22468/cvia.2019.00108
  5. Guideline for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 1: Standardized Protocol vol.20, pp.9, 2018, https://doi.org/10.3348/kjr.2019.0398
  6. Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 2: Interpretation of Cine, Flow, and Angiography Data vol.3, pp.4, 2019, https://doi.org/10.22468/cvia.2019.00115
  7. Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 2: Interpretation of Cine, Flow, and Angiography Data vol.20, pp.11, 2019, https://doi.org/10.3348/kjr.2019.0407
  8. Guidelines for Cardiovascular Magnetic Resonance Imaging from Korean Society of Cardiovascular Imaging (KOSCI) - Part 1: Standardized Protocol vol.23, pp.4, 2018, https://doi.org/10.13104/imri.2019.23.4.296
  9. Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging (KOSCI) - Part 2: Interpretation of Cine, Flow, and Angiography Data vol.23, pp.4, 2018, https://doi.org/10.13104/imri.2019.23.4.316
  10. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing vol.21, pp.2, 2018, https://doi.org/10.3348/kjr.2019.0625
  11. Characteristics of Recent Articles Published in the Korean Journal of Radiology Based on the Citation Frequency vol.21, pp.12, 2020, https://doi.org/10.3348/kjr.2020.1322
  12. The Current Practice of Cardiac Magnetic Resonance Imaging for Congenital Heart Disease in Asia: A Survey to Promote a Better Future Practice vol.5, pp.4, 2018, https://doi.org/10.22468/cvia.2021.00276