참고문헌
- Adak, D., Sarkar, M. and Mandal, S. (2014), "Effect of nano-silica on strength and durability of fly ash based geopolymer mortar", Constr. Build. Mater., 70, 453-459. https://doi.org/10.1016/j.conbuildmat.2014.07.093
- Adak, D., Sarkar, M. and Mandal, S. (2017), "Structural performance of nano-silica modified fly-ash based geopolymer concrete", Constr. Build. Mater., 135, 430-439. https://doi.org/10.1016/j.conbuildmat.2016.12.111
- Adam, A.A. (2009), Strength and Durability Properties of Alkali Activated Slag and Fly Ash-based Geopolymer Concrete, RMIT University Melbourne, Australia
- Aggarwal, P., Singh, R.P. and Aggarwal, Y. (2015), "Use of nano-silica in cement based materials-A review", Cogent Eng., 2(1), 1078018.
- Al-Majidi, M.H., Lampropoulos, A., Cundy, A. and Meikle, S. (2016), "Development of geopolymer mortar under ambient temperature for in situ applications", Constr. Build. Mater., 120, 198-211. https://doi.org/10.1016/j.conbuildmat.2016.05.085
- Alanazi, H., Yang, M., Zhang, D. and Gao, Z.J. (2016), "Bond strength of PCC pavement repairs using metakaolin-based geopolymer mortar", Cement Concrete Compos., 65, 75-82. https://doi.org/10.1016/j.cemconcomp.2015.10.009
- ASTM (2005), ASTM C 989 - 05 Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars, American Society for Testing and Materials (ASTM), America.
- Bakharev, T. (2004), "Effect of curing regime and type of activator on properties of alkali-activated fly ash", R. Soc. Chem., 292, 249-262.
- Behera, R.K. (2010), Characterization of Fly Ash for Their Effective Management and Utilization.
- Daffalla, S.B., Mukhtar, H. and Shaharun, M.S. (2010), "Characterization of adsorbent developed from rice husk: effect of surface functional group on phenol adsorption".
- Davidovits, J. (1984), "X-ray analysis and X-ray diffraction of casing stones from the pyramids of Egypt and the limestone of the associated quarries", Science In Egyptology Symposia.
- Davidovits, J. (1994), "High alkali cements for 21st century concretes", Struct. Eng. Mech., 144, 383-398.
- Deb, P.S., Sarker, P.K. and Barbhuiya, S. (2015), "Effects of nano-silica on the strength development of geopolymer cured at room temperature", Constr. Build. Mater., 101, 675-683. https://doi.org/10.1016/j.conbuildmat.2015.10.044
- Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A. and van Deventer, J.S.J. (2007), "Geopolymer technology: the current state of the art", J. Mater. Sci., 42(9), 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
- Fernandez-Jimenez, A.M., Palomo, A. and Lopez-Hombrados, C. (2006), "Engineering properties of alkaliactivated fly ash concrete", ACI Mater. J., 103(2), 106-112.
- Foletto, E., Castoldi, M., Oliveira, L., Hoffmann, R. and Jahn, S. (2009), "Conversion of rice husk ash into zeolitic materials", Lat. Am. Appl. Res., 39(1), 75-78.
- Global Cement Consumption Forecasts 2016-18, United Kingdom.
- Goriparthi, M.R. and Rao, G.T. (2017), "Effect of fly ash and GGBS combination on mechanical and durability properties of GPC", Adv. Concrete Constr., 5(4), 313-330. https://doi.org/10.12989/ACC.2017.5.4.313
- Hardjito, D., Wallah, S.E., Sumajouw, D.M. and Rangan, B.V. (2004), "On the development of fly ash-based geopolymer concrete", ACI Mater. J., Am. Concrete Inst., 101(6), 467-472.
-
Haruehansapong, S., Pulngern, T. and Chucheepsakul, S. (2014), "Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-
$SiO_2$ ", Constr. Build. Mater., 50, 471-477. https://doi.org/10.1016/j.conbuildmat.2013.10.002 - He, J., Jie, Y., Zhang, J., Yu, Y. and Zhang, G. (2013), "Synthesis and characterization of red mud and rice husk ash-based geopolymer composites", Cement Concrete Compos., 37, 108-118. https://doi.org/10.1016/j.cemconcomp.2012.11.010
- Heah, C., Kamarudin, H., Al Bakri, A.M., Binhussain, M., Luqman, M., Nizar, I.K., Ruzaidi, C. and Liew, Y. (2011), "Effect of curing profile on kaolin-based geopolymers", Phys. Procedia, 22, 305-311. https://doi.org/10.1016/j.phpro.2011.11.048
- Inti, S., Sharma, M. and Tandon, V. (2016), Ground Granulated Blast Furnace Slag (GGBS) and Rice Husk Ash (RHA) Uses in the Production of Geopolymer Concrete.
- Jindal, B.B., Singhal, D., Sharma, S.K., Ashish, D.K. and Parveen (2017a), "Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine", Adv. Concrete Constr., 5(1), 17-29. https://doi.org/10.12989/acc.2017.5.1.17
- Jindal, B.B., Parveen, Singhal, D. and Goyal, A. (2017b), "Predicting relationship between mechanical properties of low calcium fly ash-based geopolymer concrete", Tran. Ind. Ceram. Soc., 76(4), 1-8. https://doi.org/10.1080/0371750X.2016.1231086
- Jindal, B.B., Singhal, D., Sharma, S., Yadav, A., Shekhar, S. and Anand, A. (2017c), "Strength and permeation properties of alccofine activated low calcium fy ash geopolymer concrete", Comput. Concrete, 20(6), 683-688. https://doi.org/10.12989/CAC.2017.20.6.683
- Jindal, B.B., Singhal, D. and Sharma, S.K. (2017d), "Suitability of ambient-cured alccofine added lowcalcium fly ash-based geopolymer concrete", Ind. J. Sci. Technol., 10(12), DOI: 10.17485/ijst/2017/v10i12/110428.
- Jindal, B.B., Yadav, A., Anand, A. and Badal, A. (2016), "Development of high strength fly ash based geopolymer concrete with alccofine", IOSR J. Mech. Civil Eng. (IOSR-JMCE), 55-58.
- Jindal, B.B., Dhirendra Singhal, S.K.S. and Parveen (2017e), "Prediction of mechanical properties of alccofine activated low calcium fly ash based geopolymer concrete", ARPN J. Eng. Appl. Sci., 12(9), 3022-3031.
- Kani, E.N. and Allahverdi, A. (2009), "Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan", J. Mater. Sci., 44(12), 3088-3097. https://doi.org/10.1007/s10853-009-3411-1
- Kathirvel, P., Thangavelu, M., Gopalan, R. and Kaliyaperumal, S.R.M. (2017), "Bond characteristics of reinforcing steel embedded in geopolymer concrete", IOP Conference Series: Earth and Environmental Science.
- Kim, Y.Y., Lee, B.J., Saraswathy, V. and Kwon, S.J. (2014), "Strength and durability performance of alkaliactivated rice husk ash geopolymer mortar", Scientif. World J., 2014, Article ID 209584, 10.
- Kishore, G.N. and Gayathri, B. (2017), "Experimental study on rise husk ash & fly ash based geo-polymer concrete using M-sand", IOP Conference Series: Materials Science and Engineering.
- Limited, A.C. (2014), Alccofine 1203, Micro Fine Mineral Additive for Concrete and Mortars, Counto Microfine Products Pvt. Ltd., Goa.
- Lloyd, N. and Rangan, B. (2010), "Geopolymer concrete with fly ash", Second International Conference on Sustainable Construction Materials and Technologies.
- Lloyd, N. and Rangan, V. (2009), "Geopolymer concrete-sustainable cementless concrete", ACI Spec. Publ., 261, 33-54.
- Malhotra, V. (1999), "Making concrete "greener" with fly ash", Concrete Int., 21(5), 61-66.
- Mehta, A. and Siddique, R. (2017), "Strength, permeability and micro-structural characteristics of lowcalcium fly ash based geopolymers", Constr. Build. Mater., 141, 325-334. https://doi.org/10.1016/j.conbuildmat.2017.03.031
- Mehta, P.K. (2001), "Reducing the environmental impact of concrete", Concrete Int. 23(10), 61-66.
- Nath, P. and Sarker, P.K. (2014), "Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition", Constr. Build. Mater., 66, 163-171. https://doi.org/10.1016/j.conbuildmat.2014.05.080
- Nath, P. and Sarker, P.K. (2015), "Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature", Cement Concrete Compos., 55, 205-214. https://doi.org/10.1016/j.cemconcomp.2014.08.008
- Nath, P., Sarker, P.K. and Rangan, V.B. (2015), "Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing", Procedia Eng., 125, 601-607. https://doi.org/10.1016/j.proeng.2015.11.077
- Neupane, K., Kidd, P., Chalmers, D., Baweja, D. and Shrestha, R. (2016), "Investigation on compressive strength development and drying shrinkage of ambient cured powder-activated geopolymer concretes", Aust. J. Civil Eng., 14(1), 1-12. https://doi.org/10.1080/14488353.2015.1092631
- Noushini, A., Babaee, M. and Castel, A. (2016), "Suitability of heat-cured low-calcium fly ash-based geopolymer concrete for precast applications", Mag. Concr. Res, 68(4), 163-177. https://doi.org/10.1680/macr.15.00065
- Palomo, A., Grutzeck, M. and Blanco, M. (1999), "Alkali-activated fly ashes: a cement for the future", Cement Concrete Res., 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
- Jangra, P., Singhal, D., Jindal, B.B.,Junaid, M.T. and Mehta, A. (2018)," Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing", Constr. Build. Mater., 180, 298-307. https://doi.org/10.1016/j.conbuildmat.2018.05.286
- Patil, A.A., Chore, H. and Dodeb, P. (2014), "Effect of curing condition on strength of geopolymer concrete", Adv. Concrete Constr., 2(1), 29-37. https://doi.org/10.12989/acc.2014.2.1.029
- Perera, D., Uchida, O., Vance, E. and Finnie, K. (2007), "Influence of curing schedule on the integrity of geopolymers", J. Mater. Sci., 42(9), 3099-3106. https://doi.org/10.1007/s10853-006-0533-6
-
Phoo-ngernkham, T., Chindaprasirt, P., Sata, V., Hanjitsuwan, S. and Hatanaka, S. (2014), "The effect of adding nano-
$SiO_2\;and\;nano-Al_2O_3$ on properties of high calcium fly ash geopolymer cured at ambient temperature", Mater. Des., 55, 58-65. - Quercia, G. and Brouwers, H. (2010), "Application of nano-silica (nS) in concrete mixtures", 8th fib International Ph. D. Symposium in Civil Engineering, Lyngby.
- Rangan, B.V. (2008), "Low-calcium fly ash-based geopolymer concrete", Faculty of Engineering, Curtin University of Technology.
- Rangan, B.V., Hardjito, D., Wallah, S.E. and Sumajouw, D.M. (2005), "Studies on fly ash-based geopolymer concrete", Proceedings of the World Congress Geopolymer, Saint Quentin, France.
- Rao, G.M. and Rao, T.G. (2015), "Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar", Arab. J. Sci. Eng., 40(11), 3067-3074. https://doi.org/10.1007/s13369-015-1757-z
- Rashad, A.M. (2014), "A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash", Mater. Des., 53, 1005-1025. https://doi.org/10.1016/j.matdes.2013.07.074
- Ravikumar, D., Peethamparan, S. and Neithalath, N. (2010), "Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder", Cement Concrete Compos., 32(6), 399-410. https://doi.org/10.1016/j.cemconcomp.2010.03.007
- Rovnaník, P. (2010), "Effect of curing temperature on the development of hard structure of metakaolinbased geopolymer", Constr. Build. Mater., 24(7), 1176-1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023
- Sharma, C. and Jindal, B.B. (2015), "Effect of variation of fly ash on the compressive strength of fly ash based Geopolymer Concrete", IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), April.
- Shekhovtsova, J., Kovtun, M. and Kearsley, E.P. (2015), "Evaluation of short-and long-term properties of heat-cured alkali-activated fly ash concrete", Mag. Concrete Res., 67(16), 897-905. https://doi.org/10.1680/macr.14.00377
- Shinde, B. and Kadam, K. (2016), "Effect of addition of ordinary portland cement on geopolymer concrete with ambient curing", International Journal of Modern Trends in Engineering and Research, Amravati, India.
- Shinde, B. and Kadam, K. (2016) "Properties of flyash based geopolymer mortar with ambient curing", Int. J. Eng. Res., 5, 203-206.
- Siddique, R. and Khan, M.I. (2011), Supplementary Cementing Materials, Springer Science & Business Media.
- Singh, B., Ishwarya, G., Gupta, M. and Bhattacharyya, S.K. (2015), "Geopolymer concrete: A review of some recent developments", Constr. Build. Mater., 85, 78-90. https://doi.org/10.1016/j.conbuildmat.2015.03.036
- Singhal, D., Jindal, B.B. and Garg, A. (2017), "Mechanical properties of ground granulated blast furnace slag based geopolymer concrete incorporating alccofine with different concentration and curing temperature", Adv. Sci. Eng. Med., 9(11), 948-958. https://doi.org/10.1166/asem.2017.2059
- Sofi, M., Van Deventer, J., Mendis, P. and Lukey, G. (2007), "Bond performance of reinforcing bars in inorganic polymer concrete (IPC)", J. Mater. Sci., 42(9), 3107-3116. https://doi.org/10.1007/s10853-006-0534-5
- Sreevidya, V. (2014), "Investigations on the flexural behaviour of ferro geopolymer composite slabs", http://hdl.handle.net/10603/22931.
- Srinivasreddy, A.B., McCarthy, T.J. and Lume, E. (2013), "Effect of rice husk ash on workability and strength of concrete", 26th Biennial Concrete Institute of Australia's National Conference (Concrete 2013), Australia.
- Sujatha, T., Kannapiran, K. and Nagan, S. (2012), "Strength assessment of heat cured geopolymer concrete slender column", Asian J. Civil Eng., 13(5), 635-646.
- Supraja, V. and Rao, M.K. (2012), "Experimental study on Geo-Polymer concrete incorporating GGBS", Int. J. Elec. Commun. Soft Comput. Sci. Eng. (IJECSCSE), 2(2), 11-15.
- Temuujin, J., Van Riessen, A. and Williams, R. (2009), "Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes", J. Hazard. Mater., 167(1), 82-88. https://doi.org/10.1016/j.jhazmat.2008.12.121
- Van Jaarsveld, J., Van Deventer, J. and Lukey, G. (2002), "The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers", Chem. Eng. J., 89(1), 63-73. https://doi.org/10.1016/S1385-8947(02)00025-6
- Venkatesan, R.P. and Pazhani, K.C. (2016), "Strength and durability properties of geopolymer concrete made with ground granulated blast furnace slag and black rice husk ash", KSCE J. Civil Eng., 20(6), 2384-2391. https://doi.org/10.1007/s12205-015-0564-0
- Vijai, K., Kumutha, R. and Vishnuram, B. (2010), "Effect of types of curing on strength of geopolymer concrete", Int. J. Phys. Sci., 5(9), 1419-1423.
- Wallah, S. and Rangan, B.V. (2006), "Low-calcium fly ash-based geopolymer concrete: Long-term properties", Res. Report-GC2, Curtin University, Australia.
- Xie, T. and Ozbakkaloglu, T. (2015), "Behavior of low-calcium fly ash bottom ash based geopolymer concrete cured at ambient temperature", Ceram. Int., 85, 5945-5958.
- Xu, H. and Van Deventer, J. (2000), "The geopolymerisation of alumino-silicate minerals", Int. J. Min. Pr., 59(3), 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5
- Zhang, M.H., Islam, J. and Peethamparan, S. (2012), "Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag", Cement Concrete Compos., 34(5), 650-662. https://doi.org/10.1016/j.cemconcomp.2012.02.005
피인용 문헌
- Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer vol.11, pp.2, 2021, https://doi.org/10.12989/acc.2021.11.2.127
- Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete vol.11, pp.3, 2018, https://doi.org/10.12989/acc.2021.11.3.219
- Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach vol.27, pp.4, 2018, https://doi.org/10.12989/cac.2021.27.4.319