참고문헌
- ACI 363R-92 (1992), State of the Art Report on High Strength Concrete, ACI Committee Report 363, American Concrete Institute, Dteroit, 363R1-363R55.
- Akcay, B. and Tasdemir, M.A. (2009), "Optimisation of using lightweight aggregates in mitigating autogenous deformation of concrete", Constr. Build. Mater., 23(1), 353-363. https://doi.org/10.1016/j.conbuildmat.2007.11.015
- Alii, M.R. (2007), "Performance of plain and blended cements exposed to high sulphate concentrations", Adv. Cement Res., 19(4), 167-175. https://doi.org/10.1680/adcr.2007.19.4.167
- Ariffin, M.A.M., Bhutta, M.A.R., Hussin, M.W., Mohd Tahir, M. and Aziah, N. (2013), "Sulfuric acid resistance of blended ash geopolymer concrete", Constr. Build. Mater., 43, 80-86. https://doi.org/10.1016/j.conbuildmat.2013.01.018
- ASTM C267-01 (2012), Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes.
- ASTM C39/C39M-12 (2012), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, 4-2 Annual Book of ASTM Standard, Philadelphia.
- Bakharev, T. (2005), "Durability of geopolymer materials in sodium and magnesium sulfate solutions", Cement Concrete Res., 35(6), 1233-1246. https://doi.org/10.1016/j.cemconres.2004.09.002
- Bassuoni, M.T. and Nehdi, M.L. (2007), "Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction", 37, 1070-1084. https://doi.org/10.1016/j.cemconres.2007.04.014
- Bondar, D., Lynsdale, C.J., Milestone, N.B. and Hassani, N. (2015), "Sulfate resistance of alkali activated pozzolans", Int. J. Concrete Struct. Mater., 9(2), 145-158. https://doi.org/10.1007/s40069-014-0093-0
- Visitanupong, C. (2009), "Durability of fly ash based geopolymer mortar", Thesis Approval, Graduate School, Kasetsart University, Thailand.
- C496, ASTM (1990), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.
- Chi, M. and Huang, R. (2013), "Binding mechanism and properties of alkali-activated fly ash/slag mortars", Constr. Build. Mater., 40, 291-298. https://doi.org/10.1016/j.conbuildmat.2012.11.003
- Committee Euro (1990), International Du Beton (CEB-FIB), CEB-FIB Model Code Thomas Telford, London.
- Dombrowski, K., Buchwald, A. and Weil, M. (2007), "The influence of calcium content on the structure and thermal performance of fly ash based geopolymers", J. Mater. Sci., 42(9), 3033-3043. https://doi.org/10.1007/s10853-006-0532-7
- Ganesan, N., Indira, P.V. and Santhakumar, A. (2013), "Engineering properties of steel fibre reinforced geopolymer concrete", Adv. Concrete Constr., 1(4), 305-318. https://doi.org/10.12989/acc2013.1.4.305
- Hardjito, D. and Vijaya Rangan, B. (2005), "Development and properties of low-calcium fly ash-based geopolymer concrete", Research report GC: 94, http://www.geopolymer.org/fichiers_pdf/curtin-flyash-GP-concrete-report.pdf.
- Hardjito, D., Wallah, S.E., Sumajouw, D.M. and Rangan, B.V. (2005), "On the development of fly ash-based geopolymer concrete", Mater. J., 101(6), 467-472.
- Hasanein, S.A., Khate, H., El-Enein, S.A. and El-Sayed, H.A. (2011) "Resistance of alkali activated watercooled slag geopolymer to sulphate attack", Ceramics-Silikaty, 55(2), 153-160.
- He, J., Jie, Y., Zhang, J., Yu, Y. and Zhang, G. (2013), "Synthesis and characterization of red mud and rice husk ash-based geopolymer composites", Cement Concrete Compos., 37, 108-118. https://doi.org/10.1016/j.cemconcomp.2012.11.010
- Juenger, M.C.G., Winnefeld, F., Provis, J.L. and Ideker, J.H. (2011), "Advances in alternative cementitious binders", Cement Concrete Res., 41(12), 1232-1243. https://doi.org/10.1016/j.cemconres.2010.11.012
- Komnitsas, K. and Zaharaki, D. (2007), "Geopolymerisation: A review and prospects for the minerals industry", Min. Eng., 20(14), 1261-1277. https://doi.org/10.1016/j.mineng.2007.07.011
- Kumaravel, S. and Girija, K. (2013), "Acid and salt resistance of geopolymer concrete with varying concentration of NaOH", J. Eng. Res. Stud., 4(4), 1-3.
- Li, S. and Roy, D.M. (1988), "Preparation and characterization of high and low CaO/SiO 2 ratio "pure" C-SH for chemically bonded ceramics", J. Mater. Res., 3(2), 380-386. https://doi.org/10.1557/JMR.1988.0380
- Li, Z. and Ding, Z. (2003), "Property improvement of Portland cement by incorporating with metakaolin and slag", Cement Concrete Res., 33(4), 579-584. https://doi.org/10.1016/S0008-8846(02)01025-6
- Mehta, P.K. and Burrows, R.W. (2001), "Building durable structures in the 21 st century", Concrete Int., 23(3), 57-63.
- Olivia, M. and Nikraz, H. (2012), "Properties of fly ash geopolymer concrete designed by Taguchi method", Mater. Des., 36, 191-198. https://doi.org/10.1016/j.matdes.2011.10.036
- Patil, A.A., Chore, H.S. and Dodeb, P.A. (2015), "An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products", Constr. Build. Mater., 77, 370-395. https://doi.org/10.1016/j.conbuildmat.2014.12.065
- Patil, A.A., Chore, H.S. and Dodeb, P.A. (2014), "Effect of curing condition on strength of geopolymer concrete", Adv. Concrete Constr., 2(1), 29-37. https://doi.org/10.12989/acc.2014.2.1.029
- Petermann, J.C., Saeed, A. and Hammons, M.I. (2010), "Alkali-activated geopolymers", A Literature Review.
- Peterson, P.E. (1980), "Fracture energy of concrete: Method of determination", Cement Concrete Res., 10(1), 79-89. https://doi.org/10.1016/0008-8846(80)90054-X
- RILEM 50-FMC (1985), "Committee of fracture mechanics of concrete-determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams", Mater. Struct., 18(10), 285-290. https://doi.org/10.1007/BF02472917
- Sanni, S.H. and Khadiranaikar, R.B. (2012), "Performance of geopolymer concrete under severe environmental conditions", Int. J. Civil Struct. Eng., 3(2), 396-407.
- Sarker, P.K., Haque, R. and Ramgolam, K.V. (2013), "Fracture behaviour of heat cured fly ash based geopolymer concrete", Mater. Des., 44, 580-586. https://doi.org/10.1016/j.matdes.2012.08.005
- Singh, B., Ishwarya, G., Gupta, M. and Bhattacharyya, S.K. (2015), "Geopolymer concrete: A review of some recent developments", Constr. Build. Mater., 85, 78-90. https://doi.org/10.1016/j.conbuildmat.2015.03.036
- Thokchom, S., Ghosh, P. and Ghosh, S. (2010), "Performance of fly ash based geopolymer mortars in sulphate solution", J. Eng. Sci. Technol. Rev., 3(1), 36-40. https://doi.org/10.25103/jestr.031.07
- Thokchom, S. (2014), "Fly ash geopolymer pastes in sulphuric acid", Int. J. Eng. Innov. Res., 3(6), 943-947.
- Turker, F., Akoz, F., Koral, S. and Yuzer, N. (1997), "Effects of magnesium sulfate concentration on the sulfate resistance of mortars with and without silica fume", Cement Concrete Res., 27(2), 205-214. https://doi.org/10.1016/S0008-8846(97)00009-4
- Wallah, S.E., Hardjito, D., Sumajouw, D.M.J. and Rangan, B.V. (2005), "Sulfate and acid resistance of fly ash-based geopolymer concrete", Proceedings of the Australian Structural Engineering Conference, Sydney, Australia.
- Wallah, S.E. and Rangan, B.V. (2006), "Low-calcium fly ash-based geopolymer concrete: Long-term properties", Research Report GC 2, Faculty of Engineering,Curtin University of Technology,Perth, Australia.
피인용 문헌
- Effect of Alkali Activator on the Standard Consistency and Setting Times of Fly Ash and GGBS-Based Sustainable Geopolymer Pastes vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/2593207
- Developing Geopolymer Concrete Properties by Using Nanomaterials and Steel Fibers vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/5186091
- Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach vol.27, pp.4, 2018, https://doi.org/10.12989/cac.2021.27.4.319
- Effect of different types of Waste as Binder on Durability Properties of Geopolymer Concrete: A Review vol.796, pp.1, 2021, https://doi.org/10.1088/1755-1315/796/1/012018
- Sulfuric acid effect and application of freezing-thawing curing on long fiber reinforced metabentonite and slag-based geopolymer composites vol.12, pp.2, 2018, https://doi.org/10.12989/acc.2021.12.2.145
- Mechanical and Durability Characteristics Assessment of Geopolymer Composite (GPC) at Varying Silica Fume Content vol.5, pp.9, 2018, https://doi.org/10.3390/jcs5090237
- Mechanical performance and durability of geopolymer lightweight rubber concrete vol.45, pp.None, 2018, https://doi.org/10.1016/j.jobe.2021.103608