DOI QR코드

DOI QR Code

Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers

  • Lei, Zuxiang (School of Sciences, Nanjing University of Science and Technology) ;
  • Zhang, Yang (School of Sciences, Nanjing University of Science and Technology)
  • 투고 : 2018.04.30
  • 심사 : 2018.06.11
  • 발행 : 2018.08.25

초록

In this paper, the effect of matrix cracks on the buckling of a hybrid laminated plate is investigated. The plate is composed of carbon nanotube reinforced functionally graded (CNTR-FG) layers and conventional fiber reinforced composite (FRC) layers. Different distributions of single walled carbon nanotubes (SWCNTs) through the thickness of layers are considered. The cracks are modeled as aligned slit cracks across the ply thickness and transverse to the laminate plane, and the distribution of cracks is assumed statistically homogeneous corresponding to an average crack density. The first-order shear deformation theory (FSDT) is employed to incorporate the effects of rotary inertia and transverse shear deformation, and the meshless kp-Ritz method is used to obtain the buckling solutions. Detailed parametric studies are conducted to investigate the effects of matrix crack density, CNTs distributions, CNT volume fraction, plate aspect ratio and plate length-to-thickness ratio, boundary conditions and number of layers on buckling behaviors of hybrid laminated plates containing CNTR-FG layers.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Natural Science Foundation of Jiangsu Province, Central Universities

참고문헌

  1. Adali, S. and Makins, R.K. (1991), "Buckling of unsymmetrical, cross-ply laminates with matrix cracks", Int. J. Mech. Sci., 33(10), 851-861. https://doi.org/10.1016/0020-7403(91)90007-P
  2. Arani, A.G., Kolahdouzan, F. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate", Steel Compos. Struct., Int. J., 26(3), 273-287.
  3. Asadi, H. (2017), "Numerical simulation of the fluid-solid interaction for CNT reinforced functionally graded cylindrical shells in thermal environments", Acta Astronautica, 138 214-224. https://doi.org/10.1016/j.actaastro.2017.05.039
  4. Asadi, H. and Wang, Q. (2017a), "An investigation on the aeroelastic flutter characteristics of FG-CNTRC beams in the supersonic flow", Compos. Part B: Eng., 116, 486-499. https://doi.org/10.1016/j.compositesb.2016.10.089
  5. Asadi, H. and Wang, Q. (2017), "Dynamic stability analysis of a pressurized FG-CNTRC cylindrical shell interacting with supersonic airflow", Compos. Part B: Eng., 118, 15-25. https://doi.org/10.1016/j.compositesb.2017.03.001
  6. Asadi, H., Souri, M. and Wang, Q. (2017), "A numerical study on flow-induced instabilities of supersonic FG-CNT reinforced composite flat panels in thermal environments", Compos. Struct., 171, 113-125. https://doi.org/10.1016/j.compstruct.2017.02.003
  7. Bahrami, M.N., Allahkarami, F. and Saryazdi, M.G. (2018), "Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-ofplane motion", Steel Compos. Struct., Int. J., 26(6), 673-691.
  8. Budiansky, B. and O'Connell, R.J. (1976), "Elastic moduli of a cracked solid", Int. J. Solids Struct., 12(2), 81-97. https://doi.org/10.1016/0020-7683(76)90044-5
  9. Dvorak, G.J., Laws, N. and Hejazi, M. (1985), "Analysis of progressive matrix cracking in composite laminates I. Thermoelastic properties of a ply with cracks", J. Compos. Mater., 19(3), 216-234. https://doi.org/10.1177/002199838501900302
  10. Ebrahimi, F. and Farazmandnia, N. (2018), "Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams", Steel Compos. Struct., Int. J., 27(2), 149-159.
  11. Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299(4-5), 720-738. https://doi.org/10.1016/j.jsv.2006.06.068
  12. Gayathri, P., Umesh, K. and Ganguli, R. (2010), "Effect of matrix cracking and material uncertainty on composite plates", Reliabil. Eng. Syst. Safe., 95(7), 716-728. https://doi.org/10.1016/j.ress.2010.02.004
  13. Gudmundson, P. and Weilin, Z. (1993), "An analytic model for thermoelastic properties of composite laminates containing transverse matrix cracks", Int. J. Solids Struct., 30(23), 3211-3231. https://doi.org/10.1016/0020-7683(93)90110-S
  14. Kashtalyan, M. and Soutis, C. (2013), "Predicting residual stiffness of cracked composite laminates subjected to multiaxial inplane loading", J. Compos. Mater., 47(20-21), 2513-2524. https://doi.org/10.1177/0021998313488809
  15. Keleshteri, M.M., Asadi, H. and Wang, Q. (2017a), "Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation", Thin-Wall. Struct., 120, 203-214. https://doi.org/10.1016/j.tws.2017.08.035
  16. Keleshteri, M.M., Asadi, H. and Wang, Q. (2017b), "Postbuckling analysis of smart FG-CNTRC annular sector plates with surface-bonded piezoelectric layers using generalized differential quadrature method", Comput. Methods Appl. Mech. Eng., 325, 689-710. https://doi.org/10.1016/j.cma.2017.07.036
  17. Keleshteri, M.M., Asadi, H. and Wang, Q. (2018), "On the snapthrough instability of post-buckled FG-CNTRC rectangular plates with integrated piezoelectric layers", Comput. Methods Appl. Mech. Eng., 331, 53-71. https://doi.org/10.1016/j.cma.2017.11.015
  18. Laws, N. and Dvorak, G.J. (1988), "Progressive transverse cracking in composite laminates", J. Compos. Mater., 22(10), 900-916. https://doi.org/10.1177/002199838802201001
  19. Laws, N., Dvorak, G.J. and Hejazi, M. (1983), "Stiffness changes in unidirectional composites caused by crack systems", Mech. Mater., 2(2), 123-137. https://doi.org/10.1016/0167-6636(83)90032-7
  20. Lee, J.-W. and Daniel, I.M. (1990), "Progressive transverse cracking of crossply composite laminates", J. Compos. Mater., 24(11), 1225-1243. https://doi.org/10.1177/002199839002401108
  21. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2016a), "Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method", Compos. Part B: Eng., 84, 211-221. https://doi.org/10.1016/j.compositesb.2015.08.081
  22. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2016b), "Parametric analysis of frequency of rotating laminated CNT reinforced functionally graded cylindrical panels", Compos. Part B: Eng., 90, 251-266. https://doi.org/10.1016/j.compositesb.2015.12.024
  23. Liu, W.K., Jun, S., Li, S., Adee, J. and Belytschko, T. (1995), "Reproducing kernel particle methods for structural dynamics", Int. J. Numer. Methods Eng., 38(10), 1655-1679. https://doi.org/10.1002/nme.1620381005
  24. Makins, R.K. and Adali, S. (1991), "Bending of cross-ply laminated plates with matrix cracks", J. Strain Anal. Eng. Des., 26(4), 253-257. https://doi.org/10.1243/03093247V264253
  25. Mehri, M., Asadi, H. and Wang, Q. (2016a), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Methods Appl. Mech. Eng., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017
  26. Mehri, M., Asadi, H. and Wang, Q. (2016b), "On dynamic instability of a pressurized functionally graded carbon nanotube reinforced truncated conical shell subjected to yawed supersonic airflow", Compos. Struct., 153, 938-951. https://doi.org/10.1016/j.compstruct.2016.07.009
  27. Mehri, M., Asadi, H. and Kouchakzadeh, M.A. (2017), "Computationally efficient model for flow-induced instability of CNT reinforced functionally graded truncated conical curved panels subjected to axial compression", Comput. Methods Appl. Mech. Eng., 318, 957-980. https://doi.org/10.1016/j.cma.2017.02.020
  28. Mohammadzadeh-Keleshteri, M., Asadi, H. and Aghdam, M.M. (2017), "Geometrical nonlinear free vibration responses of FGCNT reinforced composite annular sector plates integrated with piezoelectric layers", Compos. Struct., 171, 100-112. https://doi.org/10.1016/j.compstruct.2017.01.048
  29. Moradi-Dastjerdi, R. and Payganeh, G. (2017), "Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads", Steel Compos. Struct., Int. J., 25(3), 315-326.
  30. Nikrad, S.F. and Asadi, H. (2015), "Thermal postbuckling analysis of temperature dependent delaminated composite plates", Thin-Wall. Struct., 97, 296-307. https://doi.org/10.1016/j.tws.2015.09.027
  31. Nikrad, S.F., Asadi, H., Akbarzadeh, A.H. and Chen, Z.T. (2015), "On thermal instability of delaminated composite plates", Compos. Struct., 132, 1149-1159. https://doi.org/10.1016/j.compstruct.2015.07.019
  32. Nikrad, S.F., Keypoursangsari, S., Asadi, H., Akbarzadeh, A.H. and Chen, Z.T. (2016), "Computational study on compressive instability of composite plates with off-center delaminations", Comput. Methods Appl. Mech. Eng., 310, 429-459. https://doi.org/10.1016/j.cma.2016.07.021
  33. Nikrad, S.F., Asadi, H. and Wang, Q. (2017), "Postbuckling behaviors of open section composite struts with edge delamination using a layerwise theory", Int. J. Non-Linear Mech., 95, 315-326. https://doi.org/10.1016/j.ijnonlinmec.2017.07.006
  34. Shen, H.-S. (2009a), "A comparison of buckling and postbuckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators", Compos. Struct., 91(3), 375-384. https://doi.org/10.1016/j.compstruct.2009.06.005
  35. Shen, H.-S. (2009b), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  36. Tahouneh, V. (2018), "3-D Vibration analysis of FGMWCNTs/ Phenolic sandwich sectorial plates", Steel Compos. Struct., Int. J., 26(5), 649-662.

피인용 문헌

  1. Effect of crack location on buckling analysis and SIF of cracked plates under tension vol.35, pp.2, 2018, https://doi.org/10.12989/scs.2020.35.2.215
  2. Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.809
  3. Buckling treatment of piezoelectric functionally graded graphene platelets micro plates vol.38, pp.3, 2021, https://doi.org/10.12989/scs.2021.38.3.337
  4. Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.183