DOI QR코드

DOI QR Code

Shear capacity equation for channel shear connectors in steel-concrete composite beams

  • Paknahad, Masoud (Department of Civil Engineering, Mahallat Institute of Higher Education) ;
  • Shariati, Mahdi (Faculty of Civil Engineering, University of Tabriz) ;
  • Sedghi, Yadollah (Department of Civil Engineering, Islamic Azad University, Qeshm International Campus) ;
  • Bazzaz, Mohammad (Department of Civil, Environmental, and Architectural Engineering, University of Kansas) ;
  • Khorami, Majid (Facultad de Arquitectura y Urbanismo, Universidad Tecnologica Equinoccial, Calle Rumipamba s/n y Bourgeois)
  • Received : 2018.03.22
  • Accepted : 2018.06.11
  • Published : 2018.08.25

Abstract

In this research the effect of high strength concrete (HSC) on shear capability of the channel shear connectors (CSC) in the steel concrete composite floor system was estimated experimentally and analytically. The push-out test was carried out for assessing the accurateness of the proposed model (nonlinear and finite element model) for the test specimens. A parametric analysis was conducted for predicting the shear capacity of the connectors (CSC) in the HSC. Eight push-out specimens of different sizes with different strength levels were tested under the monotonic loading system. The aim of this study was to evaluate the efficacy of the National Building Code of Canada (NBC) of Canada for analysing the loading abilities of the CSC in the HSC. Using the experimental tests results and verifying the finite element results with them, it was then confirmed by the extended parametric studies that the Canadian Design Code was less efficient for predicting the capacity of the CSC in the HSC. Hence, an alternative equation was formulated for predicting the shear capacity of these connectors during the inclusion of HSC for designing the codes.

Keywords

References

  1. ABAQUS, A.S. (2011), User's manual, Version 6.11. 1; Dassaults Systemes Inc.
  2. Abedini, M., Khlaghi, E.A., Mehrmashhadi, J., Mussa, M.H., Ansari, M. and Momeni, T. (2017), "Evaluation of Concrete Structures Reinforced with Fiber Reinforced Polymers Bars: A Review", J. Asian Sci. Res., 7(5), 165-175.
  3. AISC (2005), Specification for structural steel buildings, American Institute of Steel Construction Inc., Chicago, IL, USA.
  4. Andalib, Z. (2011), Experimental and Numerical Investigation on the Ductility of Steel Ring Constructed from Steel Plates in Concentric Braces, Semnan University, Iran.
  5. Andalib, Z., Kafi, M.A. and Bazzaz, M. (2010), "Using Hyper Elastic Material for Increasing Ductility of Bracing", Proceedings of the 1st Conference of Steel & Structures and 2nd Conference on Application of High-Strength Steels in Structural Industry, Steel & Structures.
  6. Andalib, Z., Kafi, M.A., Kheyroddin, A. and Bazzaz, M. (2011), "Investigation on the Ductility and Absorption of Energy of Steel Ring in Concentric Braces", Proceedings of the 2nd Conference of Steel and Structures, Steel and Structures.
  7. Andalib, Z., Kafi, M.A., Kheyroddin, A. and Bazzaz, M. (2014), "Experimental investigation of the ductility and performance of steel rings constructed from plates", J. Constr. Steel Res., 103, 77-88. https://doi.org/10.1016/j.jcsr.2014.07.016
  8. Andalib, Z., Kafi, M.A., Bazzaz, M. and Momenzadeh, S. (2018), "Numerical evaluation of ductility and energy absorption of steel rings constructed from plates", Eng. Struct., 169, 94-106. https://doi.org/10.1016/j.engstruct.2018.05.034
  9. ASTM C39 / C39M-04 (2004), Standard test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken, PA, USA.
  10. Awal, A.A., Shehu, I.A. and Ismail, M. (2015), "Effect of cooling regime on the residual performance of high-volume palm oil fuel ash concrete exposed to high temperatures", Constr. Build. Mater., 98, 875-883. https://doi.org/10.1016/j.conbuildmat.2015.09.001
  11. Ayatollahi, M.R., Mirsayar, M.M. and Dehghany, M. (2011), "Experimental determination of stress field parameters in bimaterial notches using photoelasticity", Mater. Des., 32(10), 4901-4908. https://doi.org/10.1016/j.matdes.2011.06.002
  12. Baran, E. and Topkaya, C. (2012), "An experimental study on channel type shear connectors", J. Constr. Steel Res., 74, 108-117. https://doi.org/10.1016/j.jcsr.2012.02.015
  13. Baran, E. and Topkaya, C. (2014), "Behavior of steel-concrete partially composite beams with channel type shear connectors", J. Constr. Steel Res., 97, 69-78. https://doi.org/10.1016/j.jcsr.2014.01.017
  14. Bazzaz, M. (2010), Seismic Behavior of Off-Centre Braced Frame with Circular Element in Steel Frame Design, Semnan University.
  15. Bazzaz, M., Kheyroddin, A., Kafi, M.A. and Andalib, Z. (2011a), "Evaluating the performance of steel ring in special bracing frame", Proceedings of the 6th Seismology and Earthquake Engineering International Conference, Ministry of Science, Research and Technology.
  16. Bazzaz, M., Kafi, M.A., Andalib, Z. and Esmaeili, H. (2011b), "Seismic Behavior of Off-centre Bracing Frame", Proceedings of the 6th National Congress on Civil Engineering.
  17. Bazzaz, M., Kheyroddin, A., Kafi, M.A. and Andalib, Z. (2012a), "Evaluation of the seismic performance of off-centre bracing system with ductile element in steel frames", Steel Compos. Struct., Int. J., 12(5), 445-464. https://doi.org/10.12989/scs.2012.12.5.445
  18. Bazzaz, M., Kheyroddin, A., Kafi, M.A. and Andalib, Z. (2012b), "Modeling and Analysis of Steel Ring Devised in Off-centric Braced Frame with the Goal of Improving Ductility of Bracing Systems", Iran Scientific and Industrial Researches Organization, Tehran, Iran.
  19. Bazzaz, M., Kafi, M.A., Kheyroddin, A., Andalib, Z. and Esmaeili, H. (2014), "Evaluating the seismic performance of off-centre bracing system with circular element in optimum place", Int. J. Steel Struct., 14(2), 293-304. https://doi.org/10.1007/s13296-014-2009-x
  20. Bazzaz, M., Andalib, Z., Kafi, M.A. and Kheyroddin, A. (2015a), "Evaluating the performance of OBS-C-O in steel frames under monotonic load", Earthq. Struct., Int. J., 8(3), 697-710.
  21. Bazzaz, M., Andalib, Z., Kheyroddin, A. and Kafi, M.A. (2015b), "Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system", Steel Compos. Struct., Int. J., 19(4), 917-937. https://doi.org/10.12989/scs.2015.19.4.917
  22. Bozorgzad, A. and Lee, H.D. (2017), "Consistent distribution of air voids and asphalt and random orientation of aggregates by flipping specimens during gyratory compaction process", Constr. Build. Mater., 132, 376-382. https://doi.org/10.1016/j.conbuildmat.2016.10.112
  23. BS 1881 (1983), "Testing Concrete, Part 121, 'Method for the Determination of Compressive Strength of Concrete Cores', British Standards Institution, London, UK.
  24. BSI, B.B.S.I. (1983), Method for determination of the compressive strength of cores, Part 120, London, UK.
  25. BSI, B. (1992), Concrete performance, production, placing and compliance criteria. DD ENV 206:1992. London.
  26. Cement, A.P. (1993), "ASTM C 150, Type I or II, except Type III may be used for cold-weather construction", Provide natural color or white cement as required to produce mortar color indicated 1.
  27. Cornelissen, H.A.W., Hordijk, D.A. and Reinhardt, H.W. (1986), "Experimental determination of crack softening characteristics of normalweight and lightweight concrete", HERON, 31(2), 1986.
  28. Ellobody, E. and Young, B. (2006), "Performance of shear connection in composite beams with profiled steel sheeting", J. Constr. Steel Res., 62(7), 682-694. https://doi.org/10.1016/j.jcsr.2005.11.004
  29. Eslami, M. and Namba, H. (2016a), "Elasto-plastic behavior of composite beam connected to RHS column, experimental test results", Int. J. Steel Struct., 16(3), 901-912. https://doi.org/10.1007/s13296-015-0067-3
  30. Eslami, M. and Namba, H. (2016b), "Mechanism of elasto-plastic behavior of composite beam connected to RHS column", Int. J. Steel Struct., 16(3), 913-933. https://doi.org/10.1007/s13296-015-0068-2
  31. Eslami, M. and Namba, H. (2016c), "Rotation capacity of composite beam connected to RHS column, experimental test results", Steel Compos. Struct., Int. J., 22(1), 141-159. https://doi.org/10.12989/scs.2016.22.1.141
  32. EUROCODE 2 (2005), EN 1992-1-1; Design of concrete structures Part 1.1 General rules and rules for buildings. CENEuropean Committee for Standardisation, Brussels, Belgium.
  33. Fanaie, N., Esfahani, F.G. and Soroushnia, S. (2015), "Analytical study of composite beams with different arrangements of channel shear connectors", Steel Compos. Struct., Int. J., 19(2), 485-501. https://doi.org/10.12989/scs.2015.19.2.485
  34. Farzad, M., Mohammadi, A., Shafieifar, M., Pham, H. and Azizinamini, A. (2017), "Development of Innovative Bridge Systems Utilizing Steel-Concrete-Steel Sandwich System".
  35. Haji Agha Mohammad Zarbaf, S.E., Norouzi, M., Allemang, R.J., Hunt, V.J. and Helmicki, A. (2017a), "Stay cable tension estimation of cable-stayed bridges using genetic algorithm and particle swarm optimization", J. Bridge Eng., 22(10), 05017008. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001130
  36. Haji Agha Mohammad Zarbaf, S.E., Norouzi, M., Allemang, R.J., Hunt, V.J., Helmicki, A. and Nims, D.K. (2017b), "Stay force estimation in cable-stayed bridges using stochastic subspace identification methods", J. Bridge Eng., 22(9), 04017055. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001091
  37. Heydari, A. (2011), "Buckling of Functionally Graded Beams with Rectangular and Annular Sections Subjected to Axial Compression", Int. J. Adv. Des. Manuf. Technol., 5(1).
  38. Heydari, A. and Shariati, M. (2018), "Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium", Struct. Eng. Mech., Int. J., 66(6).
  39. Hosain, M.U. and Pashan, A. (2006), Channel Shear Connectors in Composite Beams: Push-Out Tests, Kruger National Park, Berg-en-Dal, Mpumalanga, South Africa, ASCE.
  40. Hosain, M. and Pashan, A. (2009), "New design equations for channel shear connectors in composite beams", Can. J. Civil Eng., 36, 1435-1443. https://doi.org/10.1139/L09-078
  41. Kazemi, M.T., Momenzadeh, S.-B. and Hoseinzadehasl, M. (2012), "Study of reduced beam section connections with web opening", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September.
  42. Kim, S.E. and Nguyen, H.T. (2010), "Finite element modeling and analysis of a hybrid steel-PSC beam connection", Eng. Struct., 32(9), 2557-2569. https://doi.org/10.1016/j.engstruct.2010.04.029
  43. Kodur, V., Yahyai, M., Rezaeian, A., Eslami, M. and Poormohamadi, A. (2017), "Residual mechanical properties of high strength steel bolts subjected to heating-cooling cycle", J. Constr. Steel Res., 131, 122-131. https://doi.org/10.1016/j.jcsr.2017.01.007
  44. Maleki, S. and Bagheri, S. (2008a), "Behavior of channel shear connectors, Part I: Experimental study", J. Constr. Steel Res., 64, 1333-1340. https://doi.org/10.1016/j.jcsr.2008.01.010
  45. Maleki, S. and Bagheri, S. (2008b), "Behavior of channel shear connectors, Part II: Analytical study", J. Constr. Steel Res., 64, 1341-1348. https://doi.org/10.1016/j.jcsr.2008.01.006
  46. Maleki, S. and Mahoutian, M. (2009), "Experimental and analytical study on channel shear connectors in fiber-reinforced concrete", J. Constr. Steel Res., 65(8-9), 1787-1793. https://doi.org/10.1016/j.jcsr.2009.04.008
  47. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech.., Int. J., 46(6), 853-868. https://doi.org/10.12989/sem.2013.46.6.853
  48. Momenzadeh, S.B. (2012), "Performance of Circular Opening in Beam Web Connections", Life Sci. J., 9(3), 1377-1383.
  49. Momenzadeh, S. and Shen, J. (2018), "Seismic demand on columns in special concentrically braced frames", Eng. Struct., 168, 93-107. https://doi.org/10.1016/j.engstruct.2018.04.060
  50. Momenzadeh, S., Seker, O. and Shen, J. (2017a), "Observed seismic demand on columns in SCBFs", AEI 2017, 647-658.
  51. Momenzadeh, S., Seker, O., Faytarouni, M. and Shen, J. (2017b), "Seismic performance of all-steel buckling-controlled braces with various cross-sections", J. Constr. Steel Res., 139, 44-61. https://doi.org/10.1016/j.jcsr.2017.09.003
  52. Momenzadeh, S., Kazemi, M.T. and Asl, M.H. (2017c), "Seismic performance of reduced web section moment connections", Int. J. Steel Struct., 17(2), 413-425. https://doi.org/10.1007/s13296-017-6004-x
  53. Nazerian, M. and Sadeghiipanah, V. (2013), "Cement-bonded particleboard with a mixture of wheat straw and poplar wood", J. Forest. Res., 24(2), 381-390. https://doi.org/10.1007/s11676-013-0363-8
  54. NBC (2005), National Building Code of Canada. .
  55. Pashan, A. (2006), "Behaviour of channel shear connectors: pushout tests", M.S. Thesis; Department of Civil Engineering, University of Saskatchewan, Canada
  56. Rassouli, B., Shafaei, S., Ayazi, A. and Farahbod, F. (2016), "Experimental and numerical study on steel-concrete composite shear wall using light-weight concrete", J. Constr. Steel Res., 126, 117-128. https://doi.org/10.1016/j.jcsr.2016.07.016
  57. Razak, H.A. and Sajedi, F. (2011), "The effect of heat treatment on the compressive strength of cement-slag mortars", Mater. Des., 32(8-9), 4618-4628. https://doi.org/10.1016/j.matdes.2011.04.038
  58. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., Int. J., 21(3) 679-688. https://doi.org/10.12989/scs.2016.21.3.679
  59. Sajedi, F. and Abdul Razak, H. (2010), "Thermal activation of ordinary Portland cement-slag mortars", Mater. Des., 31(9), 4522-4527. https://doi.org/10.1016/j.matdes.2010.04.011
  60. Sajedi, F. and Razak, H.A. (2011), "Effects of thermal and mechanical activation methods on compressive strength of ordinary Portland cement-slag mortar", Mater. Des., 32(2), 984-995. https://doi.org/10.1016/j.matdes.2010.08.038
  61. Shafaei, S., Ayazi, A. and Farahbod, F. (2016), "The effect of concrete panel thickness upon composite steel plate shear walls", J. Constr. Steel Res., 117, 81-90. https://doi.org/10.1016/j.jcsr.2015.10.006
  62. Shafaei, S., Farahbod, F. and Ayazi, A. (2017), "Concrete Stiffened Steel Plate Shear Walls With an Unstiffened Opening", Structures, 12, 40-53. https://doi.org/10.1016/j.istruc.2017.07.004
  63. Shafaei, S., Farahbod, F. and Ayazi, A. (2018), "The wall-frame and the steel-concrete interactions in composite shear walls", Struct. Des. Tall Special Build., e1476.
  64. Shafieifar, M., Azizinamini, A. and Director, A. (2016), "Alternative ABC Connections Utilizing UHPC".
  65. Shafieifar, M., Farzad, M. and Azizinamini, A. (2017), "Experimental and numerical study on mechanical properties of Ultra High Performance Concrete (UHPC)", Constr. Build. Mater., 156, 402-411. https://doi.org/10.1016/j.conbuildmat.2017.08.170
  66. Shahabi, S., Sulong, N., Shariati, M., Mohammadhassani, M. and Shah, S. (2016), "Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire", Steel Compos. Struct., Int. J., 20(3), 651-669. https://doi.org/10.12989/scs.2016.20.3.651
  67. Shariati, M., Ramli Sulong, N.H., Sinaei, H., Arabnejad Kh, M.M. and Shafigh, P. (2010), "Behavior of Channel Shear Connectors in Normal and Light Weight Aggregate Concrete (Experimental and Analytical Study)", Adv. Mater. Res., 168-170, 2303-2307. https://doi.org/10.4028/www.scientific.net/AMR.168-170.2303
  68. Shariati, M., Sulong, N.H.R., KH, M.M.A. and Mahoutian, M. (2011), "Shear resistance of channel shear connectors in plain, reinforced and lightweight concrete", Sci. Res. Essays, 6(4), 977-983.
  69. Shariati, M., Ramli Sulong, N.H. and Arabnejad Khanouki, M.M. (2012a), "Experimental assessment of channel shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Mater. Des., 34, 325-331. https://doi.org/10.1016/j.matdes.2011.08.008
  70. Shariati, A., Sulong, N.R., Suhatril, M. and Shariati, M. (2012b), "Investigation of channel shear connectors for composite concrete and steel T-beam", Int. J. Phys. Sci., 7(11), 1828-1831.
  71. Shariati, M., Ramli Sulong, N.H., Shariati, A. and Kueh, A.B.H. (2016), "Comparative performance of channel and angle shear connectors in high strength concrete composites: An experimental study", Constr. Build. Mater., 120, 382-392. https://doi.org/10.1016/j.conbuildmat.2016.05.102
  72. Shen, J., Seker, O., Akbas, B., Seker, P., Momenzadeh, S. and Faytarouni, M. (2017), "Seismic performance of concentrically braced frames with and without brace buckling", Eng. Struct., 141, 461-481. https://doi.org/10.1016/j.engstruct.2017.03.043
  73. Shim, C. (2004), "Experiments on limit state design of large stud shear connectors", KSCE J. Civil Eng., 8(3), 313-318. https://doi.org/10.1007/BF02836013
  74. Standard, B. (1992), "Specification for aggregates from natural sources for concrete", London, BSI, 1-9.
  75. Structural Use of Concrete, Part 2 (1998), Code of Practice for Special Circumstances BS 8110: Part 2: 1997, British Standard Institution, London, UK.
  76. Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., Int. J., 17(5), 623-639. https://doi.org/10.12989/scs.2014.17.5.623
  77. Toghroli, A., Darvishmoghaddam, E., Zandi, Y., Parvan, M., Safa, M., Abdullahi, M.a.M., Heydari, A., Wakil, K., Gebreel, S.A.M. and Khorami, M. (2018), "Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method", Comput. Concrete, Int. J., 21(5), 525-530.

Cited by

  1. Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines vol.34, pp.3, 2018, https://doi.org/10.12989/scs.2020.34.3.347
  2. Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines vol.34, pp.3, 2018, https://doi.org/10.12989/scs.2020.34.3.377
  3. Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.743
  4. Behavior of grouped stud shear connectors between precast high-strength concrete slabs and steel beams vol.34, pp.6, 2018, https://doi.org/10.12989/scs.2020.34.6.837
  5. Elevated temperature resistance of concrete columns with axial loading vol.9, pp.4, 2018, https://doi.org/10.12989/acc.2020.9.4.355
  6. Computational analysis of three dimensional steel frame structures through different stiffening members vol.35, pp.2, 2018, https://doi.org/10.12989/scs.2020.35.2.187
  7. Effect of progressive shear punch of a foundation on a reinforced concrete building behavior vol.35, pp.2, 2018, https://doi.org/10.12989/scs.2020.35.2.279
  8. Utilization of Support Vector Models and Gene Expression Programming for Soil Strength Modeling vol.45, pp.5, 2018, https://doi.org/10.1007/s13369-020-04441-6
  9. Experimentally and Numerically Investigating the Performances of Aramid Fiber-Reinforced Steel Beams Under Impact Loadings vol.45, pp.10, 2018, https://doi.org/10.1007/s13369-020-04608-1
  10. Influence of porosity and cement grade on concrete mechanical properties vol.10, pp.5, 2018, https://doi.org/10.12989/acc.2020.10.5.393
  11. Effect of shear connectors on strength of structural sandwich panels vol.2, pp.12, 2018, https://doi.org/10.1007/s42452-020-03754-3
  12. Experimental study on the hybrid shear connection using headed studs and steel plates vol.37, pp.6, 2020, https://doi.org/10.12989/scs.2020.37.6.649
  13. Optimized AI controller for reinforced concrete frame structures under earthquake excitation vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.001
  14. Assessment of microstructure and surface effects on vibrational characteristics of public transportation vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.101
  15. Smart estimation of automatic approach in enhancing the road safety under AASHTO Standard specification and STM vol.79, pp.3, 2021, https://doi.org/10.12989/sem.2021.79.3.389
  16. Analyzing shear strength of steel-concrete composite beam with angle connectors at elevated temperature using finite element method vol.40, pp.6, 2018, https://doi.org/10.12989/scs.2021.40.6.853
  17. Hybridization of metaheuristic algorithms with adaptive neuro-fuzzy inference system to predict load-slip behavior of angle shear connectors at elevated temperatures vol.278, pp.None, 2018, https://doi.org/10.1016/j.compstruct.2021.114524