References
- Arya, H. (2003), "A new zig-zag model for laminated composite beams: free vibration analysis", J. Sound Vib., 264, 485-490. https://doi.org/10.1016/S0022-460X(02)01489-X
- Aydogdu, M. (2005), "Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method", Int. J. Mech. Sci., 47(11), 1740-1755. https://doi.org/10.1016/j.ijmecsci.2005.06.010
- Aydogdu, M. (2006), "Buckling analysis of cross-ply laminated beams with general boundary conditions by Ritz method", Compos. Sci. Technol., 66(10), 1248-1255. https://doi.org/10.1016/j.compscitech.2005.10.029
- Banerjee, J.R. (1998), "Free vibration of axially loaded composite Timoshenko beams using the dynamic stiffness matrix method", Comput. Struct., 69(2), 197-208. https://doi.org/10.1016/S0045-7949(98)00114-X
- Chakrabarti, A., Chalak, H.D., Iqbal, M.A. and Sheikh, A.H. (2012), "Buckling analysis of laminated sandwich beam with soft core", Latin Am. J. Solids Struct., 9(3), 1-15.
- Chakraborty, A., Mahapatra, R.D. and Gopalakrishan, S. (2002), "Finite element analysis of free vibration and wave propagation in asymmetric composite beams with structural discontinuities", Compos. Struct., 55(1), 23-36. https://doi.org/10.1016/S0263-8223(01)00130-1
- Dafedar, J.B. and Desai, Y.M. (2004), "Stability of composite and sandwich struts by mixed formulation", ASCE J. Eng. Mech., 130(7), 762-770. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:7(762)
- Filippi, M. and Carrera, E. (2016), "Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory", Compos. Part B: Eng., 98, 269-280. https://doi.org/10.1016/j.compositesb.2016.04.050
- Goyal, V.K. and Kapania, R.K. (2007), "A shear-deformable beam element for the analysis of laminated composites", Finite Elem. Anal. Des., 43(6-7), 463-477. https://doi.org/10.1016/j.finel.2006.11.011
- Jafari-Talookolaei, R.A., Abedi, M., Kargarnovin, M.H. and Ahmadian M.T. (2012), "An analytical approach for the free vibration analysis of generally laminated composite beams with shear effect and rotary inertia", Int. J. Mech. Sci., 65(1), 97-104. https://doi.org/10.1016/j.ijmecsci.2012.09.007
- Kahya, V. (2012), "Dynamic analysis of laminated composite beams under moving loads using finite element method", Nuclear Eng. Des., 243, 41-48. https://doi.org/10.1016/j.nucengdes.2011.12.015
- Kahya, V. (2016), "Buckling analysis of laminated composite and sandwich beams by the finite element method", Compos. Part B: Eng., 91, 126-134. https://doi.org/10.1016/j.compositesb.2016.01.031
- Kant, T., Marur, S.R. and Rao, G.S. (1998), "Analytical solution to the dynamic analysis of laminated beams using higher order refined theory", Compos. Struct., 40(1), 1-9. https://doi.org/10.1016/S0263-8223(97)00133-5
- Karama, M., Abou Harb, B., Mistou, S. and Caperaa, S. (1998), "Bending, buckling and free vibration of laminated composite with a transverse shear stress continuity model", Compos. Part B: Eng., 29(3), 223-234. https://doi.org/10.1016/S1359-8368(97)00024-3
- Li, Z.M. and Qiao, P. (2015), "Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression", Eng. Struct., 85, 277-292. https://doi.org/10.1016/j.engstruct.2014.12.028
- Mantari, J.L. and Canales, F.G. (2016), "Free vibration and buckling of laminated beams via hybrid Ritz solution for various penalized boundary conditions", Compos. Struct., 152, 306-315. https://doi.org/10.1016/j.compstruct.2016.05.037
- Matsunaga, H. (2001), "Vibration and buckling of multilayered composite beams according to higher order deformation theories", J. Sound Vib., 246(1), 47-62. https://doi.org/10.1006/jsvi.2000.3627
- Nguyen, T.K., Nguyen, N.D., Vo, T.P. and Thai, H.T. (2017), "Trigonometric-series solution for analysis of laminated composite beams", Compos. Struct., 160, 142-151. https://doi.org/10.1016/j.compstruct.2016.10.033
- Rao, K.M., Desai, Y.M. and Chitnis, M.R. (2001), "Free vibrations of laminated beams using mixed theory", Compos. Struct., 52(2), 149-160. https://doi.org/10.1016/S0263-8223(00)00162-8
- Reddy, J.N. (1997), Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, Boca Raton, FL, USA.
- Teboub, Y. and Hajela, P. (1995), "Free vibration of generally layered composite beams using symbolic computations", Compos. Struct., 33, 123-134. https://doi.org/10.1016/0263-8223(95)00112-3
- Vo, T.P. and Thai, H.T. (2012), "Vibration and buckling of composite beams using refined shear deformation theory", Int. J. Mech. Sci., 62(1), 67-76. https://doi.org/10.1016/j.ijmecsci.2012.06.001
- Wang, X., Zhu, X. and Hu, P. (2015), "Isogeometric finite element method for buckling analysis of generally laminated composite beams with different boundary conditions", Int. J. Mech. Sci., 104, 190-199. https://doi.org/10.1016/j.ijmecsci.2015.10.008
- Yuan, F.G. and Miller, R.E. (1989), "A new finite element for laminated composite beams", Comput. Struct., 31(5), 737-745. https://doi.org/10.1016/0045-7949(89)90207-1
- Yuan, F.G. and Miller, R.E. (1990), "A higher-order finite element for laminated beams", Compos. Struct., 14(2), 125-150. https://doi.org/10.1016/0263-8223(90)90027-C
- Zhen, W. and Wanji, C. (2008), "An assessment of several displacement theories for the vibration and stability analysis of laminated composite and sandwich beams", Compos. Struct., 84(4), 337-349. https://doi.org/10.1016/j.compstruct.2007.10.005
Cited by
- A study on thermo-elastic interactions in 2D porous media with-without energy dissipation vol.38, pp.5, 2018, https://doi.org/10.12989/scs.2021.38.5.523
- Analytical solutions of the temperature increment in skin tissues caused by moving heating sources vol.40, pp.4, 2018, https://doi.org/10.12989/scs.2021.40.4.511