DOI QR코드

DOI QR Code

Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing

  • Rezaiee-Pajand, Mohammad (Department of Civil Engineering, Ferdowsi University of Mashhad) ;
  • Masoodi, Amir R. (Department of Civil Engineering, Ferdowsi University of Mashhad) ;
  • Alepaighambar, Ali (Department of Civil Engineering, Ferdowsi University of Mashhad)
  • 투고 : 2017.06.03
  • 심사 : 2018.06.04
  • 발행 : 2018.08.25

초록

In this paper, the lateral-torsional buckling of axially-transversally functionally graded tapered beam is investigated. The structure cross-section is assumed to be symmetric I-section, and it is continuously laterally supported by torsional springs through the length. In addition, the height of cross-section varies linearly throughout the length of structure. The proposed formulation is obtained for the case that the elastic and shear modulus change as a power function along the beam length and section height. This structure carries two concentrated moments at the ends. In this study, the lateral displacement and twisting angle relation of the beam are defined by sinusoidal series. After establishing the eigenvalue equation of unknown constants, the beam critical bending moment is found. To validate the accuracy and correctness of results, several numerical examples are solved.

키워드

참고문헌

  1. Andrade, A. and Camotim, D. (2004), "Lateral-torsional buckling of prismatic and tapered thin-walled open beams: assessing the influence of pre-buckling deflections", Steel Compos. Struct., Int. J., 4(4), 281-301. https://doi.org/10.12989/scs.2004.4.4.281
  2. Attard, M.M. and Kim, M.-Y. (2010), "Lateral buckling of beams with shear deformations-A hyperelastic formulation", Int. J. Solids Struct., 47(20), 2825-2840. https://doi.org/10.1016/j.ijsolstr.2010.06.012
  3. Aydin, R., Gunaydin, A. and Kirac, N. (2015), "On the evaluation of critical lateral buckling loads of prismatic steel beams", Steel Compos. Struct., Int. J., 18(3), 603-621. https://doi.org/10.12989/scs.2015.18.3.603
  4. Banerjee, J.R. and Fisher, S.A. (1992), "Coupled bending-torsional dynamic stiffness matrix for axially loaded beam elements", Int. J. Numer. Methods Eng., 33(4), 739-751. https://doi.org/10.1002/nme.1620330405
  5. Banerjee, J.R. and Williamsm F.W. (1994), "Coupled bendingtorsional dynamic stiffness matrix of an axially loaded timoshenko beam element", Int. J. Solids Struct., 31(6), 749-762. https://doi.org/10.1016/0020-7683(94)90075-2
  6. Barretta, R., Feo, L. and Luciano, R. (2015), "Some closed-form solutions of functionally graded beams undergoing nonuniform torsion", Compos. Struct., 123, 132-136. https://doi.org/10.1016/j.compstruct.2014.12.027
  7. Bokaian, A. (1988), "Natural frequencies of beams under compressive axial loads", J. Sound Vib., 126(1), 46-65.
  8. Bokaian, A. (1990), "Natural frequencies of beams under tensile axial loads", J. Sound Vib., 142(3), 481-498. https://doi.org/10.1016/0022-460X(90)90663-K
  9. El-Mahdy, G.M. and El-Saadawy, M.M. (2015), "Ultimate strength of singly symmetric I-section steel beam with variable flange ratio", Thin-Wall. Struct., 87, 149-157. https://doi.org/10.1016/j.tws.2014.11.016
  10. Fatmi, R.E. (2007), "Non-uniform Warping Including the Effects of Torsion and Shear Forces. Part I: A General Beam Theory", Int. J. Solids Struct., 44, 5912-5929. https://doi.org/10.1016/j.ijsolstr.2007.02.006
  11. Gellert, M. and Gluck, J. (1972), "The influence of axial load on eigen-frequencies of a vibrating lateral restraint cantilever", Int. J. Mech. Sci., 14(11), 723-728. https://doi.org/10.1016/0020-7403(72)90010-0
  12. Gupta, L.M., Ronghe, G.N. and Naghate, M.K. (2003), "Behaviour and stability of prestressed steel plate girder for torsional buckling", Steel Compos. Struct., Int. J., 3(1), 65-73. https://doi.org/10.12989/scs.2003.3.1.065
  13. Hashemi, S.M. and Richard, M.J. (2000a), "A Dynamic Finite Element (DFE) method for free vibrations of bending-torsion coupled beams", Aerosp. Sci. Technol., 4(1), 41-55. https://doi.org/10.1016/S1270-9638(00)00114-0
  14. Hashemi, S.M. and Richard, M.J. (2000b), "Free vibrational analysis of axially loaded bending-torsion coupled beams: a dynamic finite element", Comput. Struct., 77(6), 711-724. https://doi.org/10.1016/S0045-7949(00)00012-2
  15. Hashemi, S.M., Richard, M.J. and Dhatt, G. (1999), "A new Dynamic Finite Element (DFE) formulation for lateral free vibrations of Euler-Bernoulli spinning beams using trigonometric shape functions", J. Sound Vib., 220(4), 601-624. https://doi.org/10.1006/jsvi.1998.1922
  16. Huang, Y. and Li, X.F. (2011), "Buckling Analysis of Nonuniform and Axially Graded Columns with Varying Flexural Rigidity", J. Eng. Mech., 137(1), 73-81. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000206
  17. Ioannidis, G.I. and Avraam, T.P. (2012), "Lateral-torsional buckling of simply supported beams under uniform bending and axial tensile force", Arch. Appl. Mech., 82(10), 1393-1402. https://doi.org/10.1007/s00419-012-0680-y
  18. Ioannidis, G., Mahrenholtz, O. and Kounadis, A.N. (1993), "Lateral post-buckling analysis of beams", Arch. Appl. Mech., 63(3), 151-158. https://doi.org/10.1007/BF00794889
  19. Joshi, A. and Suryanarayan, S. (1984), "Coupled flexural-torsional vibration of beams in the presence of static axial loads and end moments", J. Sound Vib., 92(4), 583-589. https://doi.org/10.1016/0022-460X(84)90200-1
  20. Joshi, A. and Suryanarayan, S. (1989), "Unified analytical solution for various boundary conditions for the coupled flexuraltorsional vibration of beams subjected to axial loads and end moments", Int. J. Solids Struct., 20(2), 167-178. https://doi.org/10.1016/0020-7683(84)90007-6
  21. Joshi, A. and Suryanarayan, S. (1991), "Iterative method for coupled flexural-torsional vibration of initially stressed beams", J. Sound Vib., 146(1), 81-92. https://doi.org/10.1016/0022-460X(91)90523-M
  22. Jun, L., Rongying, S., Hongxing, H. and Xianding, J. (2004), "Coupled bending and torsional vibration of axially loaded Bernoulli-Euler beams including warping effects", Appl. Acoust., 65(2), 153-170. https://doi.org/10.1016/j.apacoust.2003.07.006
  23. Khelil, A. and Larue, B. (2008), "Simple Solution for the flexuraltorsional buckling of laterally restrained I-beams", Eng. Struct., 30(10), 2923-2934. https://doi.org/10.1016/j.engstruct.2008.03.017
  24. Kim, N.-I. and Lee, J. (2014), "Exact solutions for stability and free vibration of thin-walled Timoshenko laminated beams under variable forces", Arch. Appl. Mech., 84(12), 1785-1809. https://doi.org/10.1007/s00419-014-0886-2
  25. Kim, N.-I., Jeon, C.-K. and Lee, J. (2013), "Dynamic stability analysis of shear-flexible composite beams", Arch. Appl. Mech., 83(5), 685-707. https://doi.org/10.1007/s00419-012-0712-7
  26. Kus, J. (2015), "Lateral-torsional buckling steel beams with simultaneously tapered flanges and web", Steel Compos. Struct., Int. J., 19(4), 897-916. https://doi.org/10.12989/scs.2015.19.4.897
  27. Lanc, D., Turkalj, G., Vo, T.P. and Brnic, J. (2016), "Nonlinear buckling behaviours of thin-walled functionally graded open section beams", Compos. Struct., 152, 829-839. https://doi.org/10.1016/j.compstruct.2016.06.023
  28. Larue, B., Khelil, A. and Gueury, M. (2007), "Elastic flexural-torsional buckling of steel beams with rigid and continuous lateral restraints", J. Constr. Steel Res., 63(5), 692-708. https://doi.org/10.1016/j.jcsr.2006.07.004
  29. Lee, S.-H., Kim, Y.-H. and Choi, S.-M. (2015), "Ultimate strength of long-span buildings with P.E.B (Pre-Engineered Building) system", Steel Compos. Struct., Int. J. 19(6), 1483-1499. https://doi.org/10.12989/scs.2015.19.6.1483
  30. Leung, A.Y.T. (1991), "Natural shape functions of a compressed Vlasov element", Thin-Wall. Struct., 11(5), 431-438. https://doi.org/10.1016/0263-8231(91)90037-J
  31. Li, S.R. and Batra, R.C. (2013), "Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams", J. Compos. Struct., 95, 5-9. https://doi.org/10.1016/j.compstruct.2012.07.027
  32. Masoodi, A.R. and Moghaddam, S.H. (2015), "Nonlinear dynamic analysis and natural frequencies of gabled frame having flexible restraints and connections", KSCE J. Civil Eng., 19(6), 1819-1824. https://doi.org/10.1007/s12205-015-0285-4
  33. Michaltsos, G.T. and Raftoyiannis, I.G. (2012), "The influence of prestressing on the twisting phenomenon of beams", Arch. Appl. Mech., 82(10), 1531-1540. https://doi.org/10.1007/s00419-012-0665-x
  34. Mohammadi, E., Hosseini, S.S. and Rohanimanesh, M.S. (2016), "Elastic lateral-torsional buckling strength and torsional bracing stiffness requirement for mono-symmetric I-beams", Thin-Wall. Struct., 104, 116-125. https://doi.org/10.1016/j.tws.2016.03.003
  35. Murthy, M. and Neogy, J. (1969), "Determination of fundamental natural frequencies of axially loaded columns and frames", J. Inst. Engt. (India) Civil Eng. Div., 49, 201-212.
  36. Nguyen, C.T., Moon, J., Le, V.N. and Lee, H.-E. (2010), "Lateraltorsional buckling of I-girders with discrete torsional bracings", J. Constr. Steel Res., 66(2), 170-177. https://doi.org/10.1016/j.jcsr.2009.09.011
  37. Nguyen, C.T., Joo, H.S., Moon, J. and Lee, H.E. (2012), "Flexural-torsional buckling strength of I-girders with discrete torsional bracing under various load conditions", Eng. Struct., 36, 337-350. https://doi.org/10.1016/j.engstruct.2011.12.022
  38. Nguyen, X.-H., Kim, N.-I. and Lee, J. (2015), "Optimum design of thin-walled composite beams for flexural-torsional buckling problem", Compos. Struct., 132, 1065-1074. https://doi.org/10.1016/j.compstruct.2015.06.036
  39. Nguyen, H.X., Lee, J., Vo, T.P. and Lanc, D. (2016), "Vibration and lateral buckling optimisation of thin-walled laminated composite channel-section beams", Compos. Struct., 143, 84-92. https://doi.org/10.1016/j.compstruct.2016.02.011
  40. Nishino, F., Kasemset, C. and Lee, S.L. (1973), "Variational formulation of stability problems for thin-walled members", Ingenieur-Archiv, 43(1), 58-68. https://doi.org/10.1007/BF00536579
  41. Orloske, K. and Parker, R.G. (2006), "Flexural-torsional buckling of misaligned axially moving beams: II. Vibration and stability analysis", Int. J. Solids Struct., 43(14-15), 4323-4341. https://doi.org/10.1016/j.ijsolstr.2005.08.015
  42. Pavlovic, R. and Kozic, P. (2003), "Almost sure stability of the thinwalled beam subjected to end moments", Theor. Appl. Mech., 30(3), 193-207.
  43. Pavlovic, R., Kozic, P., Rajkovic, P. and Pavlovic, I. (2007), "Dynamic stability of a thin-walled beam subjected to axial loads and end moments", J. Sound Vib., 301(3-5), 690-700. https://doi.org/10.1016/j.jsv.2006.10.032
  44. Pi, Y.L. and Bradford, M.A. (2002), "Elastic flexural-torsional buckling of continuously restrained arches", Int. J. Solids Struct., 39(8), 2299-2322. https://doi.org/10.1016/S0020-7683(02)00006-9
  45. Rezaiee-Pajand, M. and Masoodi, A.R. (2016), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808.
  46. Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
  47. Schrader, R.K. and Hill, H.N. (1943), "Lateral stability of unsymmetrical I-beams and trusses in bending", Transact. Am. Soc. Civil Engr., 108(1), 261-265.
  48. Schurig, M. and Bertram, A. (2011), "The torsional buckling of a cruciform column under compressive load with a vertex plasticity model", Int. J. Solids Struct., 48(1), 1-11. https://doi.org/10.1016/j.ijsolstr.2010.08.017
  49. Shooshtari, A., Heyrani Moghaddam, S. and Masoodi, A. (2015), "Pushover analysis of gabled frames with semi-rigid connections", Steel Compos. Struct., Int. J., 18(6), 1557-1568. https://doi.org/10.12989/scs.2015.18.6.1557
  50. Taylor, A.C. and Ojalvo, M. (1966), "Torsional restraint of lateral buckling", J. Struct. Div. ASCE, 92(ST2), 115-129.
  51. Tsai, H.-C. and Kelly, J.M. (2005), "Buckling of short beams with warping effect included", Int. J. Solids Struct., 42, 239-253. https://doi.org/10.1016/j.ijsolstr.2004.07.021
  52. Valentino, J. and Trahair, N.S. (1998), "Torsional restraint against elastic lateral buckling", J. Struct. Eng. ASCE, 124(10), 1217-1226. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1217)
  53. Vieira, R.F., Lisi, D. and Virtuoso, F.B. (2014), "Dynamic analysis of bridge girders submitted to an eccentric moving load", Struct. Eng. Mech., Int. J., 52(1), 173-203. https://doi.org/10.12989/sem.2014.52.1.173
  54. Vo, T.P., Lee, J., Lee, K. and Ahn, N. (2011), "Vibration analysis of thin-walled composite beams with I-shaped cross-sections", Compos. Struct., 93(2), 812-820. https://doi.org/10.1016/j.compstruct.2010.08.001
  55. Winter, G. (1958), "Lateral bracing of columns and beams", J. Struct. Div. ASCE, 84(2), 1561-1583.
  56. Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", J. Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004
  57. Yoo, C.H. and Lee, S. (2011), Stability of Structures: Principles and Applications, Elsevier.
  58. Yoon, K. and Lee, P.-S. (2014), "Modeling the warping displacements for discontinuously varying arbitrary crosssection beams", Compos. Struct., 131, 56-69. https://doi.org/10.1016/j.compstruc.2013.10.013

피인용 문헌

  1. Simplified approach to estimate the lateral torsional buckling of GFRP channel beams vol.77, pp.4, 2018, https://doi.org/10.12989/sem.2021.77.4.523