References
- Su S, Dwyer DM, Miska KB, et al. Expression of host defense peptides in the intestine of Eimeria-challenged chickens. Poult Sci 2017;96:2421-7. https://doi.org/10.3382/ps/pew468
- Lee MO, Jang HJ, Rengaraj D, et al. Tissue expression and antibacterial activity of host defense peptides in chicken. BMC Vet Res 2016;12:231. https://doi.org/10.1186/s12917-016-0866-6
- Harwig SS, Swiderek KM, Kokryakov VN, et al. Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett 1994;342:281-5. https://doi.org/10.1016/0014-5793(94)80517-2
- Lynn DJ, Higgs R, Gaines S, et al. Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics 2004;56:170-7. https://doi.org/10.1007/s00251-004-0675-0
- Xiao Y, Hughes AL, Ando J, et al. A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genomics 2004;5:56. https://doi.org/10.1186/1471-2164-5-56
- Hong YH, Song W, Lee SH, Lillehoj HS. Differential gene expression profiles of beta-defensins in the crop, intestine, and spleen using a necrotic enteritis model in 2 commercial broiler chicken lines. Poult Sci 2012;91:1081-8. https://doi.org/10.3382/ps.2011-01948
- Lynn DJ, Higgs R, Lloyd AT, et al. Avian beta-defensin nomenclature: a community proposed update. Immunol Lett 2007;110:86-9. https://doi.org/10.1016/j.imlet.2007.03.007
- Higgs R, Lynn DJ, Gaines S, et al. The synthetic form of a novel chicken beta-defensin identified in silico is predominantly active against intestinal pathogens. Immunogenetics 2005;57:90-8. https://doi.org/10.1007/s00251-005-0777-3
- Cuperus T, Coorens M, van Dijk A, Haagsman HP. Avian host defense peptides. Dev Comp Immunol 2013;41:352-69. https://doi.org/10.1016/j.dci.2013.04.019
- Truong AD, Hong Y, Hoang CT, Lee J, Hong YH. Chicken IL-26 regulates immune responses through the JAK/STAT and NF-kappa B signaling pathways. Dev Comp Immunol 2017;73:10-20. https://doi.org/10.1016/j.dci.2017.03.001
- Lee HC, Kim SK, Park TS, et al. Compensatory proliferation of endogenous chicken primordial germ cells after elimination by busulfan treatment. Stem Cell Res Ther 2013;4:136. https://doi.org/10.1186/scrt347
- Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015;43:D447-52. https://doi.org/10.1093/nar/gku1003
- Rengaraj D, Lee BR, Han JY, Pang MG. Comprehensive analysis on the homology, interaction, and miRNA regulators of human deleted in azoospermia proteins: updated evolutionary relationships with primates. Genes Genomics 2017;39:1335-51. https://doi.org/10.1007/s13258-017-0598-4
- Derache C, Esnault E, Bonsergent C, et al. Differential modulation of beta-defensin gene expression by Salmonella Enteritidis in intestinal epithelial cells from resistant and susceptible chicken inbred lines. Dev Comp Immunol 2009;33:959-66. https://doi.org/10.1016/j.dci.2009.03.005
- Hamad SK, Kim S, El-Kadi SW, Wong EA, Dalloul RA. Comparative expression of host defense peptides in turkey poults. Poult Sci 2017;96:2083-90. https://doi.org/10.3382/ps/pew500
- Xu SZ, Lee SH, Lillehoj HS, Hong YH, Bravo D. Effects of dietary selenium on host response to necrotic enteritis in young broilers. Res Vet Sci 2015;98:66-73. https://doi.org/10.1016/j.rvsc.2014.12.004
- Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature 2000;406:782-7. https://doi.org/10.1038/35021228
- Rabsch W, Andrews HL, Kingsley RA, et al. Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect Immun 2002;70:2249-55. https://doi.org/10.1128/IAI.70.5.2249-2255.2002
- Ronholm J, Zhang ZY, Cao XD, Lin M. Monoclonal antibodies to lipopolysaccharide antigens of Salmonella enterica serotype Typhimurium DT104. Hybridoma 2011;30:43-52. https://doi.org/10.1089/hyb.2010.0066
- Lu L, Li SM, Zhang L, et al. Expression of beta-defensins in intestines of chickens injected with vitamin D3 and lipopolysaccharide. Genet Mol Res 2015;14:3330-7. https://doi.org/10.4238/2015.April.13.12
- Meade KG, Narciandi F, Cahalane S, et al. Comparative in vivo infection models yield insights on early host immune response to Campylobacter in chickens. Immunogenetics 2009;61:101-10. https://doi.org/10.1007/s00251-008-0346-7
- Higgs R, Lynn DJ, Cahalane S, et al. Modification of chicken avian beta-defensin-8 at positively selected amino acid sites enhances specific antimicrobial activity. Immunogenetics 2007; 59:573-80. https://doi.org/10.1007/s00251-007-0219-5
- van Dijk A, Veldhuizen EJ, Haagsman HP. Avian defensins. Vet Immunol Immunopathol 2008;124:1-18. https://doi.org/10.1016/j.vetimm.2007.12.006
- Derache C, Labas V, Aucagne V, et al. Primary structure and antibacterial activity of chicken bone marrow-derived betadefensins. Antimicrob Agents Chemother 2009;53:4647-55. https://doi.org/10.1128/AAC.00301-09
- Rengaraj D, Truong AD, Ban J, Lillehoj HS, Hong YH. Distribution and differential expression of microRNAs in the intestinal mucosal layer of necrotic enteritis induced Fayoumi chickens. Asian-Australas J Anim Sci 2017;30:1037-47. https://doi.org/10.5713/ajas.16.0685
- Sekelova Z, Stepanova H, Polansky O, et al. Differential protein expression in chicken macrophages and heterophils in vivo following infection with Salmonella Enteritidis. Vet Res 2017; 48:35. https://doi.org/10.1186/s13567-017-0439-0
Cited by
- Unusual interplay of contrasting selective pressures on β-defensin genes implicated in male fertility of the Buffalo (Bubalus bubalis) vol.19, pp.None, 2019, https://doi.org/10.1186/s12862-019-1535-8