DOI QR코드

DOI QR Code

Thermal effects on nonlinear dynamic characteristics of polymer-CNT-fiber multiscale nanocomposite structures

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Habibi, Sajjad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
  • Received : 2017.11.23
  • Accepted : 2018.06.12
  • Published : 2018.08.25

Abstract

In the present study, nonlinear dynamic response of polymer-CNT-fiber multiscale nanocomposite plate resting on elastic foundations in thermal environments using the finite element method is performed. In this regard, the governing equations are derived based on Inverse Hyperbolic Shear Deformation Theory and von $K{\acute{a}}rm{\acute{a}}n$ geometrical nonlinearity. Three type of distribution of temperature through the thickness of the plate namely, uniform linear and nonlinear are considered. The considered element is C1-continuous with 15 DOF at each node. The effective material properties of the multiscale composite are calculated using Halpin-Tsai equations and fiber micromechanics in hierarchy. The carbon nanotubes are assumed to be uniformly distributed and randomly oriented through the epoxy resin matrix. Five types of impulsive loads are considered, namely the step, sudden, triangular, half-sine and exponential pulses. After examining the validity of the present work, the effects of the weight percentage of SWCNTs and MWCNTs, nanotube aspect ratio, volume fraction of fibers, plate aspect, temperature, elastic foundation parameters, distribution of temperature and shape of impulsive load on nonlinear dynamic response of CNT reinforced multi-phase laminated composite plate are studied in details.

Keywords

References

  1. Alizada, A.N., Sofiyev, A.H. and Kuruoglu, N. (2012), "Stress analysis of a substrate coated by nanomaterials with vacancies subjected to uniform extension load", Acta Mechanica, 223(7), 1371-1383. https://doi.org/10.1007/s00707-012-0649-5
  2. Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
  3. Chien, R.D. and Chen, C.S. (2006), "Nonlinear vibration of laminated plates on an elastic foundation", Thin Wall. Struct., 44(8), 852-860. https://doi.org/10.1016/j.tws.2006.08.016
  4. Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352.
  5. Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
  6. Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., 20(1), 205-225. https://doi.org/10.12989/scs.2016.20.1.205
  7. El Meiche, N., Tounsi, A., Ziane, N. and Mechab, I. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  8. Ebrahimi, F. and Barati, M.R. (2016a), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", Int. J. Smart Nano Mater., 7(3), 119-143. https://doi.org/10.1080/19475411.2016.1223203
  9. Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24(3), 549-564.
  10. Ebrahimi, F. and Barati, M.R. (2016c), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910. https://doi.org/10.1007/s00339-016-0441-9
  11. Ebrahimi, F. and Barati, M.R. (2016d), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
  12. Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intel. Mater. Syst. Struct., 28(11), 1472-1490.
  13. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
  14. Ebrahimi, F. and Dabbagh, A. (2016), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293.
  15. Ebrahimi, F. and Hosseini, S.H.S. (2016a), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
  16. Ebrahimi, F. and Hosseini, S.H.S. (2016b), "Double nanoplate-based NEMS under hydrostatic and electrostatic actuations", Euro. Phys. J. Plus, 131(5), 1-19. https://doi.org/10.1140/epjp/i2016-16001-3
  17. Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  18. Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Euro. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
  19. Ebrahimi, F. and Barati, M.R. (2016h), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
  20. Ebrahimi, F. and Barati, M.R. (2016i). A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2
  21. Ebrahimi, F. and Barati, M.R. (2016j), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
  22. Ebrahimi, F. and Barati, M.R. (2016k), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444.
  23. Ebrahimi, F. and Barati, M.R. (2016l), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 39(3), 1-16.
  24. Ebrahimi, F. and Barati, M.R. (2016m), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", Euro. Phys. J. Plus, 131(7), 1-14. https://doi.org/10.1140/epjp/i2016-16001-3
  25. Ebrahimi, F. and Barati, M.R. (2016n), "Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams", J. Mech., 33(1), 23-33.
  26. Ebrahimi, F. and Barati, M.R. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058
  27. Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S.V., Van Vuure, A.W., ... and Verpoest, I. (2009), "Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites", Carbon, 47(12), 2914-2923. https://doi.org/10.1016/j.carbon.2009.06.039
  28. Green, K.J., Dean, D.R., Vaidya, U.K. and Nyairo, E. (2009), "Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: synthesis, mechanical, and thermomechanical behavior", Compos. Part A: Appl. Sci. Manuf., 40(9), 1470-1475. https://doi.org/10.1016/j.compositesa.2009.05.010
  29. Grover, N., Singh, B.N. and Maiti, D.K. (2013), "New nonpolynomial shear-deformation theories for structural behavior of laminated-composite and sandwich plates", AIAA J., 51(8), 1861-1871. https://doi.org/10.2514/1.J052399
  30. He, X.Q., Rafiee, M., Mareishi, S. and Liew, K.M. (2015), "Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams", Compos. Struct., 131, 1111-1123. https://doi.org/10.1016/j.compstruct.2015.06.038
  31. Heshmati, M. and Yas, M.H. (2013), "Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads", Mater. Des., 49, 894-904. https://doi.org/10.1016/j.matdes.2013.01.073
  32. Hu, N., Qiu, J., Li, Y., Chang, C., Atobe, S., Fukunaga, H., ... and Yuan, W. (2013), "Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites", Nanos. Res. Lett., 8(1), 15. https://doi.org/10.1186/1556-276X-8-15
  33. Kant, T. and Pandya, B.N. (1988), "A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates", Compos. Struct., 9(3), 215-246. https://doi.org/10.1016/0263-8223(88)90015-3
  34. Kant, T., Varaiya, J.H. and Arora, C.P. (1990), "Finite element transient analysis of composite and sandwich plates based on a refined theory and implicit time integration schemes", Comput. Struct., 36(3), 401-420. https://doi.org/10.1016/0045-7949(90)90279-B
  35. Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
  36. Kim, M., Park, Y.B., Okoli, O.I. and Zhang, C. (2009), "Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites", Compos. Sci. Technol., 69(3-4), 335-342. https://doi.org/10.1016/j.compscitech.2008.10.019
  37. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates", Int. J. Mech. Sci., 99, 208-217. https://doi.org/10.1016/j.ijmecsci.2015.05.014
  38. Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
  39. Levinson, M. (1980), "An accurate, simple theory of the statics and dynamics of elastic plates", Mech. Res. Commun., 7(6), 343-350. https://doi.org/10.1016/0093-6413(80)90049-X
  40. Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A high-order theory of plate deformation-Part 1: Homogeneous plates", J. Appl. Mech., 44(4), 663-668. https://doi.org/10.1115/1.3424154
  41. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020
  42. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "A new higher order shear deformation theory for sandwich and composite laminated plates", Compos. Part B: Eng., 43(3), 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017
  43. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31.
  44. Moradi-Dastjerdi, R., Foroutan, M. and Pourasghar, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266. https://doi.org/10.1016/j.matdes.2012.07.069
  45. Murthy, M.V.V. (1981), "An improved transverse shear deformation theory for laminated antisotropic plates", Technical Report, NASA, United States.
  46. Rafiee, M., He, X.Q., Mareishi, S. and Liew, K.M. (2014), "Modeling and stress analysis of smart CNTs/fiber/polymer multiscale composite plates", Int. J. Appl. Mech., 6(03), 1450025. https://doi.org/10.1142/S1758825114500252
  47. Rafiee, M., Liu, X.F., He, X.Q. and Kitipornchai, S. (2014), "Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates", J. Sound Vib., 333(14), 3236-3251. https://doi.org/10.1016/j.jsv.2014.02.033
  48. Rafiee, M., Yang, J. and Kitipornchai, S. (2013), "Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers", Compos. Struct., 96, 716-725. https://doi.org/10.1016/j.compstruct.2012.10.005
  49. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  50. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
  51. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., A69-A77.
  52. Sahoo, N.G., Rana, S., Cho, J.W., Li, L. and Chan, S.H. (2010), "Polymer nanocomposites based on functionalized carbon nanotubes", Prog. Polym. Sci., 35(7), 837-867. https://doi.org/10.1016/j.progpolymsci.2010.03.002
  53. Shen, H.S. (2009), "A comparison of buckling and postbuckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators", Compos. Struct., 91(3), 375-384. https://doi.org/10.1016/j.compstruct.2009.06.005
  54. Shen, H.S., Yang, J. and Zhang, L. (2000), "Dynamic response of Reissner-Mindlin plates under thermomechanical loading and resting on elastic foundations", J. Sound Vib., 232(2), 309-329. https://doi.org/10.1006/jsvi.1999.2745
  55. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3-4), 195-220. https://doi.org/10.1007/BF01176650
  56. Spitalsky, Z., Tasis, D., Papagelis, K. and Galiotis, C. (2010), "Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties", Prog. Polym. Sci., 35(3), 357-401. https://doi.org/10.1016/j.progpolymsci.2009.09.003
  57. Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034
  58. Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong formulation finite element method based on differential quadrature: a survey", Appl. Mech. Rev., 67(2), 020801. https://doi.org/10.1115/1.4028859
  59. Tounsi, A., Houari, M.A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates". Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  60. Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F. and Chou, T. W. (2002), "Carbon nanotube/carbon fiber hybrid multiscale composites", J. Appl. Phys., 91(9), 6034-6037. https://doi.org/10.1063/1.1466880
  61. Wang, Z.X. and Shen, H.S. (2012), "Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments", Nonlin. Dyn., 70(1), 735-754. https://doi.org/10.1007/s11071-012-0491-2
  62. Yas, M.H. and Heshmati, M. (2012), "Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load", Appl. Math. Model., 36(4), 1371-1394. https://doi.org/10.1016/j.apm.2011.08.037
  63. Zhang, Y.C. and Wang, X. (2006), "Hygrothermal effects on interfacial stress transfer characteristics of carbon nanotubes-reinforced composites system", J. Reinf. Plast. Compos., 25(1), 71-88. https://doi.org/10.1177/0731684406055456
  64. Zhu, J., Taylor, Z. and Zienkiewicz, O. (2005), "The finite element method: its basis and fundamentals", Butterworth-Heinemann Burlington, VT.

Cited by

  1. Frequency Characteristics of Multiscale Hybrid Nanocomposite Annular Plate Based on a Halpin-Tsai Homogenization Model with the Aid of GDQM vol.10, pp.4, 2018, https://doi.org/10.3390/app10041412