DOI QR코드

DOI QR Code

The use of generalized functions modeling the concentrated loads on Timoshenko beams

  • Received : 2017.10.17
  • Accepted : 2018.06.20
  • Published : 2018.08.25

Abstract

An incongruity is underlined about the analysis of Timoshenko beams subjected to concentrated loads modelled through the use of generalized functions. While for Euler-Bernoulli beams this modeling always leads to effective results, on the contrary, the contemporary assumptions of concentrated external moment, interpreted as a generalized function (doublet), and of shear deformation determine inconsistent discontinuities in the deflection laws. A physical/theoretical explanation of this not-neglecting incongruity is given in the text.

Keywords

References

  1. Arbabi, F. (1991), Structural Analysis and Behaviou, McGraw-Hill, New York.
  2. Brungraber, R.J. (1965), "Singularity functions in the solution of beam-deflection problems", J. Eng. Educ. (Mech. Div. Bull.), 1(9), 278-280.
  3. Caddemi, S., Calio, I. and Cannizzaro, F. (2013), "Closed-form solutions for stepped Timoshenko beams with internal singularities and along axis external supports", Arch. Appl. Mech., 83, 559-577. https://doi.org/10.1007/s00419-012-0704-7
  4. Challamel, N. (2011), "Higher-order shear beam theories and enriched continuum", Mech. Res. Commun., 38, 388.392. https://doi.org/10.1016/j.mechrescom.2011.05.004
  5. Cheng, P., Davila, C. and Hou, G. (2012), "Static, vibration analysis and sensitivity analysis of stepped beams using singularity functions", J. Struct., 2014, Article ID 234085.
  6. Colajanni, P., Falsone, G. and Recupero, A. (2009), "Simplified formulation of solution for beams on Winkler foundation allowing discontinuities due to loads and constraints", Int. J. Eng. Educ., 25, 75-83.
  7. Dirac, P.A.M. (1930), The Principles of Quantum Mechanics, Oxford University Press, Oxford.
  8. Ecsedi, I. and Dluhi, K. (2004), "Use of discontinuity functions to obtain the frequency equation", J. Comput. Appl. Mech., 5(1), 193-199.
  9. Elishakoff, I., Kaplunov, J. and Nolde, E. (2015), "Celebrating the centenary of Timoshenko's study of effects of shear deformation and rotary inertia", Appl. Mech. Rev., 67(6), 1067.
  10. Failla, G. (2014), "On the dynamics of viscoelastic discontinuous beams", J. Sound Vib., 60, 52-63.
  11. Failla, G. and Santini, A. (2007), "On Euler-Bernoulli discontinuous beam solutions via uniform-beam Green's functions", Int. J. Solid. Struct., 44, 7666-7687. https://doi.org/10.1016/j.ijsolstr.2007.05.003
  12. Failla, G. and Santini, A. (2008), "A solution method for Euler-Bernoulli vibrating discontinuous beams", Mech. Res. Commun., 35, 517-529. https://doi.org/10.1016/j.mechrescom.2008.04.002
  13. Failla, G., Santini, A. and Spanos, P.D. (2007), "Closed-form solutions for stochastic Euler-Bernoulli discontinuous beams", Congresso XVIII Congresso Nazionale AIMETA, Brescia, September.
  14. Falsone, G. (2002), "The use of generalized functions in the discontinuous beam bending differential equations", Int. J. Eng. Educ., 18(3), 337-343.
  15. Falsone, G. and Settineri, D. (2011), "An Euler-Bernoulli-like finite element method for Timoshenko beams", Mech. Res. Commun., 38, 12-16. https://doi.org/10.1016/j.mechrescom.2010.10.009
  16. Falsone, G. and Settineri, D. (2013), "Exact stochastic solution of beams subjected to delta-correlated loads", Struct. Eng. Mech., 47(3), 307-329. https://doi.org/10.12989/sem.2013.47.3.307
  17. Ghannadiasl, A. and Mofid, M. (2014), "Dynamic green function for response of timoshenko beam with arbitrary boundary conditions", Mech. Bas. Des. Struct. Mach., 42(1), 97-110. https://doi.org/10.1080/15397734.2013.836063
  18. Grossi, R.O. and Raffo, J.L. (2016), "On application of theory of distributions to static and dynamic analysis of cracked beams", Int. J. Struct. Stab. Dyn., 16(10), 1550073. https://doi.org/10.1142/S021945541550073X
  19. Kanwal, R.P. (1983), Generalized Functions Theory and Applications, Academic Press, New York.
  20. Macaulay, W.H. (1919), "Note on the deflection of beams", Mess. Math., 48, 129-130.
  21. Pilkey, W.D. (1964), "Some properties and applications of singularity functions based on the theory of distributions", J. Franklin Inst., 277(5), 464-497. https://doi.org/10.1016/0016-0032(64)90424-7
  22. Schwartz, L. (1966). Theorie des Distributions, Hermann, Paris.
  23. Timoshenko, S.P. (1922), "On the transverse vibrations of bars of uniform cross section", Philos. Mag., 43, 125-131. https://doi.org/10.1080/14786442208633855
  24. Yavari, A., Sarkani, S. and Moyer, E.T. (2000), "On applications of generalized functions to beam bending problems", Int. J. Solid. Struct., 37, 5675-5705. https://doi.org/10.1016/S0020-7683(99)00271-1
  25. Yavari, A., Sarkani, S. and Reddy, J.N. (2001a), "On nonuniform Euler-Bernoulli and Timoshenko beams with jump discontinuities: application of distribution theory", Int. J. Solid. Struct., 38, 8389-8406. https://doi.org/10.1016/S0020-7683(01)00095-6
  26. Yavari, A., Sarkani, S. and Reddy, J.N. (2001b), "Generalized solutions for beams with jump discontinuities on elastic foundations", Arch. Appl. Mech., 71(9), 625-639. https://doi.org/10.1007/s004190100169

Cited by

  1. Random vibration mitigation of beams via tuned mass dampers with spring inertia effects vol.54, pp.9, 2018, https://doi.org/10.1007/s11012-019-00983-8