DOI QR코드

DOI QR Code

Thermal post-buckling analysis of a laminated composite beam

  • Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University, Yildirim Campus)
  • 투고 : 2017.06.02
  • 심사 : 2018.06.10
  • 발행 : 2018.08.25

초록

The purpose of this study is to investigate thermal post-buckling analysis of a laminated composite beam subjected under uniform temperature rising with temperature dependent physical properties. The beam is pinned at both ends and immovable ends. Under temperature rising, thermal buckling and post-buckling phenomena occurs with immovable ends of the beam. In the nonlinear kinematic model of the post-buckling problem, total Lagrangian approach is used in conjunction with the Timoshenko beam theory. Also, material properties of the laminated composite beam are temperature dependent: that is the coefficients of the governing equations are not constant. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The effects of the fibber orientation angles, the stacking sequence of laminates and temperature rising on the post-buckling deflections, configurations and critical buckling temperatures of the composite laminated beam are illustrated and discussed in the numerical results. Also, the differences between temperature dependent and independent physical properties are investigated for post-buckling responses of laminated composite beams.

키워드

참고문헌

  1. Akbas, S.D. (2015c), "Large deflection analysis of edge cracked simple supported beams", Struct. Eng. Mech., 54(3), 433-451. https://doi.org/10.12989/sem.2015.54.3.433
  2. Akbas, S.D. (2013), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Math. Prob. Eng., 2013, Article ID 871815, 14.
  3. Akbas, S.D. (2014), "Large post-buckling behavior of Timoshenko beams under axial compression loads", Struct. Eng. Mech., 51(6), 955-971. https://doi.org/10.12989/sem.2014.51.6.955
  4. Akbas, S.D. (2015a), "On post-buckling behavior of edge cracked functionally graded beams under axial loads", Int. J. Struct. Stab. Dyn., 15(4), 1450065. https://doi.org/10.1142/S0219455414500655
  5. Akbas, S.D. (2015b), "Post-buckling analysis of axially functionally graded three dimensional beams", Int. J. Appl. Mech., 7(3), 1550047. https://doi.org/10.1142/S1758825115500477
  6. Akbas, S.D. (2017), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/SCS.2017.24.5.579
  7. Akbas, S.D. (2018a), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. https://doi.org/10.12989/SCS.2018.26.6.733
  8. Akbas, S.D. (2018b) "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., 66(1), 27-36. https://doi.org/10.12989/SEM.2018.66.1.027
  9. Akbas, S.D. (2018c), "Large deflection analysis of a fiber reinforced composite beam", Steel Compos. Struct., 27(5), 567- 5763. https://doi.org/10.12989/SCS.2018.27.5.567
  10. Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech., 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109
  11. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
  12. Asadi, H. and Aghdam, M.M. (2014), "Large amplitude vibration and post-buckling analysis of variable cross-section composite beams on nonlinear elastic foundation", Int. J. Mech. Sci., 79, 47-55. https://doi.org/10.1016/j.ijmecsci.2013.11.017
  13. Baghani, M., Jafari-Talookolaei, R.A. and Salarieh, H. (2011), "Large amplitudes free vibrations and post-buckling analysis of unsymmetrically laminated composite beams on nonlinear elastic foundation", Appl. Math. Model., 35(1), 130-138. https://doi.org/10.1016/j.apm.2010.05.012
  14. Benselama, K., El Meiche, N., Bedia, E.A.A. and Tounsi, A. (2015), "Buckling analysis in hybrid cross-ply composite laminates on elastic foundation using the two variable refined plate theory", Struct. Eng. Mech., 55(1), 47-64. https://doi.org/10.12989/sem.2015.55.1.047
  15. Cardoso, J.B., Benedito, N.M. and Valido, A.J. (2009), "Finite element analysis of thin-walled composite laminated beams with geometrically nonlinear behavior including warping deformation", Thin Wall. Struct., 47(11), 1363-1372. https://doi.org/10.1016/j.tws.2009.03.002
  16. Chang, X.P., Zhang, X.D. and Liu, Q.Y. (2011), "Geometrically nonlinear analysis of cross-ply laminated composite beams subjected to uniform temperature rise", Adv. Mater. Res., 335, 527-530.
  17. Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B: Eng., 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027
  18. Cunedioglu, Y. and Beylergil, B. (2014), "Free vibration analysis of laminated composite beam under room and high temperatures", Struct. Eng. Mech., 51(1), 111-130. https://doi.org/10.12989/sem.2014.51.1.111
  19. Di Sciuva, M. and Icardi, U. (1995), "Large deflection of adaptive multilayered Timoshenko beams", Compos. Struct., 31(1), 49-60. https://doi.org/10.1016/0263-8223(95)00001-1
  20. Donthireddy, P. and Chandrashekhara, K. (1997), "Nonlinear thermomechanical analysis of laminated composite beams", Adv. Compos. Mater., 6(2), 153-166. https://doi.org/10.1163/156855197X00049
  21. Ebrahimi, F. and Barati, M.R. (2016a), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
  22. Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24(3), 549-564.
  23. Ebrahimi, F. and Barati, M.R. (2016c), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 924-936.
  24. Ebrahimi, F. and Barati, M.R. (2016d), "Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556
  25. Ebrahimi, F. and Barati, M.R. (2016e), "A nonlocal higher-order shear deformation beam theory for vibr ation analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  26. Ebrahimi, F. and Barati, M.R. (2016f), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 238. https://doi.org/10.1140/epjp/i2016-16238-8
  27. Ebrahimi, F. and Barati, M.R. (2016g), "An exact solution for buckling analysis of embedded piezo-electro-magnetically actuated nanoscale beams", Adv. Nano Res., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
  28. Ebrahimi, F. and Barati, M.R. (2017a), "Buckling analysis of smart size-dependent higher order Magneto-Electro-Thermoelastic functionally graded nanosize beams", J. Mech., 33(1), 23-33. https://doi.org/10.1017/jmech.2016.46
  29. Ebrahimi, F. and Barati, M.R. (2017b), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 39(3), 937-952. https://doi.org/10.1007/s40430-016-0551-5
  30. Ebrahimi, F. and Farazmandnia, N. (2016), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24(10), 820-829.
  31. Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24(10), 1-37. https://doi.org/10.1080/15376494.2015.1091526
  32. Ebrahimi, F. and Hosseini, S.A.H. (2016), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
  33. Ebrahimi, F. and Hosseini, S.H.S. (2017), "Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates", Eur. Phys. J. Plus, 132(4), 172. https://doi.org/10.1140/epjp/i2017-11400-6
  34. Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 2016, Article ID 9561504, 20.
  35. Ebrahimi, F. and Salari, E. (2015a), "Effect of various thermal loadings on buckling and vibrational characteris tics of nonlocal temperature-dependent FG nanobeams", Mech. Adv. Mater. Struct., 23(12), 1-58.
  36. Ebrahimi, F. and Salari, E. (2015b), "Size-dependent thermoelectrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
  37. Ebrahimi, F. and Salari, E. (2015c), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
  38. Ebrahimi, F. and Salari, E. (2016a), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397. https://doi.org/10.1080/15376494.2015.1091524
  39. Ebrahimi, F. and Salari, E. (2016b), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
  40. Ebrahimi, F. and Shafiei, N. (2016), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772.
  41. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and nonlinear temperature distributions", J. Therm. Stress., 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
  42. Emam, S.A. and Nayfeh, A.H. (2009), "Postbuckling and free vibrations of composite beams", Compos. Struct., 88(4), 636-642. https://doi.org/10.1016/j.compstruct.2008.06.006
  43. Felippa, C.A. (2018), "Notes on nonlinear finite element methods", url:http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/NFEM.Ch11.d/NFEM.Ch11.pdf.
  44. Fraternali, F. and Bilotti, G. (1997), "Nonlinear elastic stress analysis in curved composite beams", Comput. Struct., 62(5), 837-859. https://doi.org/10.1016/S0045-7949(96)00301-X
  45. Ganapathi, M., Patel, B.P., Saravanan, J. and Touratier, M. (1998), "Application of spline element for large-amplitude free vibrations of laminated orthotropic straight/curved beams", Compos. Part B: Eng., 29(1), 1-8. https://doi.org/10.1016/S1359-8368(97)00025-5
  46. Ghazavi, A. and Gordaninejad, F. (1989), "Nonlinear bending of thick beams laminated from bimodular composite materials", Compos. Sci. Technol., 36(4), 289-298. https://doi.org/10.1016/0266-3538(89)90043-2
  47. Gunda, J.B. and Rao, G.V. (2013), "Post-buckling analysis of composite beams: A simple intuitive formulation", Sadhana, 38(3), 447-459. https://doi.org/10.1007/s12046-013-0144-2
  48. Gupta, R.K., Gunda, J.B., Janardhan, G.R. and Rao, G.V. (2010), "Post-buckling analysis of composite beams: simple and accurate closed-form expressions", Compos. Strnct., 92(8), 1947-1956. https://doi.org/10.1016/j.compstruct.2009.12.010
  49. Jafari-Talookolaei, R.A., Salarieh, H. and Kargarnovin, M.H. (2011), "Analysis of large amplitude free vibrations of unsymmetrically laminated composite beams on a nonlinear elastic foundation", Acta Mechanica, 219(1), 65-75. https://doi.org/10.1007/s00707-010-0439-x
  50. Kocaturk, T. and Akbas, S.D. (2010), "Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material", Struct. Eng. Mech., 35(6), 677-697. https://doi.org/10.12989/sem.2010.35.6.677
  51. Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347
  52. Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng. Mech., 41(6), 775-789. https://doi.org/10.12989/sem.2012.41.6.775
  53. Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties", Steel Compos. Struct., 15(5), 481-505. https://doi.org/10.12989/scs.2013.15.5.481
  54. Kurtaran, H. (2015), "Geometrically nonlinear transient analysis of thick deep composite curved beams with generalized differential quadrature method", Compos. Struct., 128, 241-250. https://doi.org/10.1016/j.compstruct.2015.03.060
  55. Latifi, M., Kharazi, M. and Ovesy, H.R. (2016), "Nonlinear dynamic response of symmetric laminated composite beams under combined in-plane and lateral loadings using full layerwise theory", Thin Wall. Struct., 104, 62-70. https://doi.org/10.1016/j.tws.2016.03.006
  56. Li, Z.M. and Qiao, P. (2015a), "Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression", Eng. Struct., 85, 277-292. https://doi.org/10.1016/j.engstruct.2014.12.028
  57. Li, Z.M. and Qiao, P. (2015b), "Thermal postbuckling analysis of anisotropic laminated beams with different boundary conditions resting on two-parameter elastic foundations", Eur. J. Mech. A/Solid., 54, 30-43. https://doi.org/10.1016/j.euromechsol.2015.06.001
  58. Li, Z.M. and Yang, D.Q. (2016), "Thermal postbuckling analysis of anisotropic laminated beams with tubular cross-section based on higher-order theory", Ocean Eng., 115, 93-106. https://doi.org/10.1016/j.oceaneng.2016.02.017
  59. Liu, Y. and Shu, D.W. (2015), "Effects of edge crack on the vibration characteristics of delaminated beams", Struct. Eng. Mech., 53(4), 767-780. https://doi.org/10.12989/sem.2015.53.4.767
  60. Loja, M.A.R., Barbosa, J.I. and Soares, C.M.M. (2001), "Static and dynamic behaviour of laminated composite beams", Int. J. Struct. Stab. Dyn., 1(4), 545-560. https://doi.org/10.1142/S0219455401000354
  61. Machado, S.P. (2007), "Geometrically non-linear approximations on stability and free vibration of composite beams", Eng. Struct., 29(12), 3567-3578. https://doi.org/10.1016/j.engstruct.2007.08.009
  62. Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges", Commun. Nonlin. Sci. Numer. Simul., 14(3), 906-915. https://doi.org/10.1016/j.cnsns.2007.10.014
  63. Mareishi, S., Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Nonlinear free vibration, postbuckling and nonlinear static deflection of piezoelectric fiber-reinforced laminated composite beams", Compos. Part B: Eng., 59, 123-132. https://doi.org/10.1016/j.compositesb.2013.11.017
  64. Moro개, L.A.T., Melo, A.M.C.D. and Parente, Jr. E. (2015), "Geometrically nonlinear analysis of thin-walled laminated composite beams", Lat. Am. J. Solid. Struct., 12(11), 2094-2117. https://doi.org/10.1590/1679-78251782
  65. Oh, I.K., Han, J.H. and Lee, I. (2000), "Postbuckling and vibration characteristics of piezolaminated composite plate subject to thermo-piezoelectric loads", J. Sound Vib., 233(1), 19-40. https://doi.org/10.1006/jsvi.1999.2788
  66. Oliveira, B.F. and Creus, G.J. (2003), "Nonlinear viscoelastic analysis of thin-walled beams in composite material", Thin Wall. Struct., 41(10), 957-971. https://doi.org/10.1016/S0263-8231(03)00042-9
  67. Pagani, A. and Carrera, E. (2017), "Large-deflection and postbuckling analyses of laminated composite beams by Carrera Unified Formulation", Compos. Struct., 170, 40-52. https://doi.org/10.1016/j.compstruct.2017.03.008
  68. Pai, P.F. and Nayfeh, A.H. (1992), "A nonlinear composite beam theory", Nonlin. Dyn., 3(4), 273-303. https://doi.org/10.1007/BF00045486
  69. Patel, B.P., Ganapathi, M. and Touratier, M. (1999), "Nonlinear free flexural vibrations/post-buckling analysis of laminated orthotropic beams/columns on a two parameter elastic foundation", Compos. Struct., 46(2), 189-196. https://doi.org/10.1016/S0263-8223(99)00054-9
  70. Patel, S.N. (2014), "Nonlinear bending analysis of laminated composite stiffened plates", Steel Compos. Struct., 17(6), 867-890. https://doi.org/10.12989/scs.2014.17.6.867
  71. Sheinman, I. and Adan, M. (1987), "The effect of shear deformation on post-buckling behavior of laminated beams", J. Appl. Mech., 54(3), 558-562. https://doi.org/10.1115/1.3173069
  72. Shen, H.S. (2001), "Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties", Comput. Meth. Appl. Mech. Eng., 190, 5377-5390. https://doi.org/10.1016/S0045-7825(01)00172-4
  73. Shen, H.S., Chen, X. and Huang, X.L. (2016), "Nonlinear bending and thermal postbuckling of functionally graded fiber reinforced composite laminated beams with piezoelectric fiber reinforced composite actuators", Compos. Part B: Eng., 90, 326-335. https://doi.org/10.1016/j.compositesb.2015.12.030
  74. Shen, H.S., Lin, F. and Xiang Y. (2017), "Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations", Eng. Struct., 140, 89-97. https://doi.org/10.1016/j.engstruct.2017.02.069
  75. Singh, G., Rao, G.V. and Iyengar, N.G.R. (1992), "Nonlinear bending of thin and thick unsymmetrically laminated composite beams using refined finite element model", Comput. Struct., 42(4), 471-479. https://doi.org/10.1016/0045-7949(92)90114-F
  76. Stoykov, S. and Margenov, S. (2014), "Nonlinear vibrations of 3D laminated composite beams", Math. Prob. Eng., 2014, Article ID 892782, 14.
  77. Topal, U. (2017), "Buckling load optimization of laminated composite stepped columns", Struct. Eng. Mech., 62(1), 107-111. https://doi.org/10.12989/sem.2017.62.1.107
  78. Valido, A.J. and Cardoso, J.B. (2003), "Geometrically nonlinear composite beam structures: design sensitivity analysis", Eng. Optim., 35(5), 531-551. https://doi.org/10.1080/03052150310001604784
  79. Vinson, J.R. and Sierakowski, R.L. (2002), The Behavior of Structures Composed of Composite Materials, Kluwer Academic Publishers, Netherlands.
  80. Wang, X., Lu, G. and Xiao, D.O. (2002), "Non-linear thermal buckling for local delamination near the surface of laminated cylindrical shell", Int. J. Mech. Sci., 44(5), 947-965. https://doi.org/10.1016/S0020-7403(02)00028-0
  81. Youzera, H., Meftah, S.A., Challamel, N. and Tounsi, A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B: Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008

피인용 문헌

  1. Hygrothermal Post-Buckling Analysis of Laminated Composite Beams vol.11, pp.1, 2018, https://doi.org/10.1142/s1758825119500091
  2. Free vibration analysis of angle-ply laminated composite and soft core sandwich plates vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.663
  3. Buckling and stability analysis of sandwich beams subjected to varying axial loads vol.34, pp.2, 2018, https://doi.org/10.12989/scs.2020.34.2.241
  4. Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
  5. Monitoring and control of multiple fraction laws with ring based composite structure vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.129
  6. Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2018, https://doi.org/10.12989/anr.2021.10.3.263
  7. Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam vol.78, pp.2, 2021, https://doi.org/10.12989/sem.2021.78.2.117
  8. A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage vol.79, pp.5, 2018, https://doi.org/10.12989/sem.2021.79.5.531