DOI QR코드

DOI QR Code

Plasmon Assisted Deep-ultraviolet Pulse Generation from Amorphous Silicon Dioxide in Nano-aperture

  • Lee, Hyunsu (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Ahn, Heesang (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kim, Kyujung (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kim, Seungchul (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • Received : 2018.06.26
  • Accepted : 2018.07.25
  • Published : 2018.08.25

Abstract

Ultrafast deep-ultraviolet (DUV) pulse generation from the subwavelength aperture of a plasmonic waveguide was investigated. The plasmonic nanofocusing of near-infrared (NIR) pulses was exploited to enhance DUV photoemission of surface third harmonic generation (STHG) at the amorphous $SiO_2$ dielectric. The generated DUV pulses which are successfully made from a nano-aperture using 10 fs NIR pulses have a spectral bandwidth of 13 nm at a carrier wavelength of 266 nm. This method is applicable for tip-based ultrafast UV laser spectroscopy of nanostructures or biomolecules

Keywords

References

  1. W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X.-Y. Zhu, "Hot-electron transfer from semiconductor," Science 328, 1543-1547 (2010). https://doi.org/10.1126/science.1185509
  2. M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, "Attosecond nanoplasmonic-field microscope," Nat. Photon. 1, 539-544 (2007). https://doi.org/10.1038/nphoton.2007.169
  3. J. Li, Z. Liu, C. Tan, X. Guo, L. Wang, A. Sancar, and D. Zhong, "Dynamics and mechanism of repair of ultraviolet-induced (6-4) photoproduct by photolyase," Nature 466, 887-891 (2010). https://doi.org/10.1038/nature09192
  4. F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schröder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, "Generation of sub-3 fs pulses in the deep ultraviolet," Opt. Lett. 35, 2248-2250 (2010). https://doi.org/10.1364/OL.35.002248
  5. W. J. Schreier, T. E. Schrader, F. O. Koller, P. Gilch, C. E. Crespo-Hernández, V. N. Swaminathan, T. Carell, W. Zinth, and B. Kohler, "Thymine dimerization in DNA is an ultrafast photoreaction," Science 315, 625-629 (2007). https://doi.org/10.1126/science.1135428
  6. Y. Liu, B. Tang, H. Shen, S. Zhang, and B. Zhang "Probing ultrafast internal conversion of o-xylene via femtosecond time-resolved photoelectron imaging," Opt. Express 18, 5791-5801 (2010). https://doi.org/10.1364/OE.18.005791
  7. O. Gessner, A. M. D. Lee, J. P. Shaffer, H. Reisler, S. V. Levchenko, A. I. Krylov, J. G. Underwood, H. Shi, A. L. L. East, D. M. Wardlaw, E. T. H. Chrysostom, C. C. Hayden, and A. Stolow "Femtosecond multidimensional imaging of a molecular dissociation," Science 311, 219-222 (2006). https://doi.org/10.1126/science.1120779
  8. M. Xu, V. V. Ermolenkov, V. N. Uversky, and I. K. Lednev, "Hen egg white lysozyme fibrillation: a deep-UV resonance Raman spectroscopic study," J. Biophotonics 1, 215-229 (2008). https://doi.org/10.1002/jbio.200710013
  9. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004). https://doi.org/10.1103/PhysRevLett.93.137404
  10. A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, "Superfocusing of surface polaritons in the conical structure," J. Appl. Phys. 87, 3785-3788 (2000). https://doi.org/10.1063/1.372414
  11. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang "Plasmon lasers at deep subwavelength scale," Nature 461, 629-632 (2009). https://doi.org/10.1038/nature08364
  12. T. Y. F. Tsang, "Surface-plasmon-enhanced third-harmonic generation in thin silver films," Opt. Lett. 21, 245-247 (1996). https://doi.org/10.1364/OL.21.000245
  13. D. K. Gramotnev, "Plasmonics beyond the diffraction limit," Nat. Photon. 4, 83-91 (2010). https://doi.org/10.1038/nphoton.2009.282
  14. V. S. Volkova, and S. I. Bozhevolnyi, "Bend loss for channel plasmon polaritons," Appl. Phys. Lett. 89, 143108 (2006). https://doi.org/10.1063/1.2358953
  15. E. Verhagen, A. Polman, and L. (Kobus) Kuipers, "Nano-focusing in laterally tapered plasmonic waveguides," Opt. Express 16, 45-57 (2008). https://doi.org/10.1364/OE.16.000045
  16. T. Y. F. Tsang, "Optical third-harmonic generation at interfaces," Phys. Rev. A 52, 4116-4125 (1995). https://doi.org/10.1103/PhysRevA.52.4116
  17. C.-H. Tseng, S. Matsika, and T. C. Weinacht, "Two-dimensional ultrafast fourier transform spectroscopy in the deep ultraviolet," Opt. Express 17, 18788-18793 (2009). https://doi.org/10.1364/OE.17.018788
  18. I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, "Plasmonic generation of ultrashort extreme-ultraviolet light pulses," Nat. Photon. 5, 677-681 (2011). https://doi.org/10.1038/nphoton.2011.258
  19. H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, "Generation of coherent extreme-ultraviolet radiation from bulk sapphire crystal," ACS Photon., 4, 1627-1632 (2017) . https://doi.org/10.1021/acsphotonics.7b00350
  20. I.-Y. Park, J. Choi, D.-H. Lee, S. Han, S. Kim, and S.-W. Kim "Generation of EUV radiation by plasmonic field enhancement using nano-structured bowties and funnel-waveguides," Ann. Phys. 525, 87-96, (2013). https://doi.org/10.1002/andp.201200160
  21. H. Kim, J. Kim, H. An, Y. Lee, G.-Y. Lee, J. Na, K. Park, S. Lee, S.-Y. Lee, B. Lee, and Y. Jeong, "Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light," Opt. Express 25, 30290-30303 (2017). https://doi.org/10.1364/OE.25.030290
  22. S. Han, H. Kim, Y. W. Kim, Y.-J. Kim, S. Kim, I.-Y. Park, and S.-W. Kim, "High harmonic generation by strongly enhanced femtosecond pulses in metal-sapphire nanostructure waveguide," Nat. Commun. 7, 13105 (2016). https://doi.org/10.1038/ncomms13105
  23. H. Kim, S. Y. Lee, S. Koo, J. Kim, K. Park, D. Lee, L. A. Vazquez-Zuniga, N. Park, B. Lee, and Y. Jeong, "Theoretical study on the generation of a low-noise plasmonic hotspot by means of a trench-assisted circular nano-slit," Opt. Express 22, 26844-26853 (2014). https://doi.org/10.1364/OE.22.026844
  24. M. Hentsche, T. Utikal, H. Giessen, and M. Lippitz, "Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas," Nano Lett. 12, 3778-3782 (2012). https://doi.org/10.1021/nl301686x
  25. M. Kauranen and Z. Anatoly, "Nonlinear plasmonics," Nat. Photon. 6, 737 (2012). https://doi.org/10.1038/nphoton.2012.244