DOI QR코드

DOI QR Code

Globular Adiponectin Exerts a Pro-Inflammatory Effect via IκB/NF-κB Pathway Activation and Anti-Inflammatory Effect by IRAK-1 Downregulation

  • Lee, Kyoung-Hee (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital) ;
  • Jeong, Jiyeong (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital) ;
  • Woo, Jisu (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital) ;
  • Lee, Chang-Hoon (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital) ;
  • Yoo, Chul-Gyu (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital)
  • Received : 2018.01.02
  • Accepted : 2018.06.20
  • Published : 2018.08.31

Abstract

Adiponectin, a hormone produced by adipose tissue, is very abundant in plasma, and its anti- and pro-inflammatory effects are reported. However, the mechanisms of these pro- and anti-inflammatory effects are not fully defined. Herein, we evaluated the dual inflammatory response mechanism of adiponectin in macrophages. Short-term globular adiponectin (gAd) treatment induced $I{\kappa}B{\alpha}$ degradation, $NF-{\kappa}B$ nuclear translocation, and $TNF-{\alpha}$ production in RAW 264.7 cells. Polymyxin B pretreatment did not block gAd-induced $I{\kappa}B{\alpha}$ degradation, and heated gAd was unable to degrade $I{\kappa}B{\alpha}$, suggesting that the effects of gAd were not due to endotoxin contamination. gAd activated IKK and Akt, and inhibition of either IKK or Akt by dominant-negative $IKK{\beta}$ ($DN-IKK{\beta}$) or DN-Akt overexpression blocked gAd-induced $I{\kappa}B{\alpha}$ degradation, suggesting that short-term incubation with gAd mediates inflammatory responses by activating the $I{\kappa}B/NF-{\kappa}B$ and PI3K/Akt pathways. Contrastingly, long-term stimulation with gAd induced, upon subsequent stimulation, tolerance to gAd, lipopolysaccharide, and CpG-oligodeoxynucleotide, which is associated with gAd-induced downregulation of IL-receptor-associated kinase-1 (IRAK-1) due to IRAK-1 transcriptional repression. Conclusively, our findings demonstrate that the pro- and anti-inflammatory responses to gAd in innate immune cells are time-dependent, and mediated by the activation of the $I{\kappa}B/NF-{\kappa}B$ pathway, and IRAK-1 downregulation, respectively.

Keywords

References

  1. Ajuwon, K.M., and Spurlock, M.E. (2005). Adiponectin inhibits LPSinduced NF-kappaB activation and IL-6 production and increases PPARgamma2 expression in adipocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1220-1225. https://doi.org/10.1152/ajpregu.00397.2004
  2. Arita, Y., Kihara, S., Ouchi, N., Takahashi, M., Maeda, K., Miyagawa, J., Hotta, K., Shimomura, I., Nakamura, T., Miyaoka, K., et al. (1999). Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79-83. https://doi.org/10.1006/bbrc.1999.0255
  3. Berg, A.H., Combs, T.P., Du, X., Brownlee, M., and Scherer, P.E. (2001).. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 947-953. https://doi.org/10.1038/90992
  4. Chan, K.H., Yeung, S.C., Yao, T.J., Ip, M.S., Cheung, A.H., Chan-Yeung, M.M., Mak, J.C., and Society, C.S.G.o.t.H.K.T. (2010). Elevated plasma adiponectin levels in patients with chronic obstructive pulmonary disease. Int. J. Tuberc. Lung Dis. 14, 1193-1200.
  5. Chandra, R., Federici, S., Bishwas, T., Nemeth, Z.H., Deitch, E.A., Thomas, J.A., Spolarics, Z. (2013). IRAK1-dependent signaling mediates mortality in polymicrobial sepsis. Inflammation 36, 1503-1512. https://doi.org/10.1007/s10753-013-9692-1
  6. Chandrasekar, B., Boylston, W.H., Venkatachalam, K., Webster, N.J., Prabhu, S.D., and Valente, A.J. (2008). Adiponectin blocks interleukin-18-mediated endothelial cell death via APPL1-dependent AMP-activated protein kinase (AMPK). activation and IKK/NFkappaB/PTEN suppression. J. Biol. Chem. 283, 24889-24898. https://doi.org/10.1074/jbc.M804236200
  7. Dalamaga, M., Diakopoulos, K.N., and Mantzoros, C.S. (2012). The role of adiponectin in cancer: a review of current evidence. Endocrine Rev. 33, 547-594. https://doi.org/10.1210/er.2011-1015
  8. Fruebis, J., Tsao, T.S., Javorschi, S., Ebbets-Reed, D., Erickson, M.R., Yen, F.T., Bihain, B.E., and Lodish, H.F. (2001). Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. USA 98, 2005-2010. https://doi.org/10.1073/pnas.98.4.2005
  9. Haugen, F., and Drevon, C.A. (2007). Activation of nuclear factorkappaB by high molecular weight and globular adiponectin. Endocrinology 148, 5478-5486. https://doi.org/10.1210/en.2007-0370
  10. Haugen, F., Ranheim, T., Harsem, N.K., Lips, E., Staff, A.C., and Drevon, C.A. (2006). Increased plasma levels of adipokines in preeclampsia: relationship to placenta and adipose tissue gene expression. Am. J. Physiol. Endocrinol. Metab. 290, E326-333. https://doi.org/10.1152/ajpendo.00020.2005
  11. Hendler, I., Blackwell, S.C., Mehta, S.H., Whitty, J.E., Russell, E., Sorokin, Y., and Cotton, D.B. (2005). The levels of leptin, adiponectin, and resistin in normal weight, overweight, and obese pregnant women with and without preeclampsia. Am. J. Obstet. Gynecol. 193, 979-983. https://doi.org/10.1016/j.ajog.2005.06.041
  12. Huang, H., Park, P.H., McMullen, M.R., and Nagy, L.E. (2008). Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. J. Gastroenterol. Hepatol. 23 Suppl 1, S50-53. https://doi.org/10.1111/j.1440-1746.2007.05284.x
  13. Hulthe, J., Hulten, L.M., and Fagerberg, B. (2003). Low adipocytederived plasma protein adiponectin concentrations are associated with the metabolic syndrome and small dense low-density lipoprotein particles: atherosclerosis and insulin resistance study. Metabolism 52, 1612-1614. https://doi.org/10.1016/S0026-0495(03)00313-5
  14. Kanakaraj, P., Schafer, P.H., Cavender, D.E., Wu, Y., Ngo, K., Grealish, P.F., Wadsworth, S.A., Peterson, P.A., Siekierka, J.J., Harris, C.A., et al. (1998). Interleukin (IL).-1 receptor-associated kinase (IRAK). requirement for optimal induction of multiple IL-1 signaling pathways and IL-6 production. J. Exp. Med. 187, 2073-2079. https://doi.org/10.1084/jem.187.12.2073
  15. Kawagoe, T., Sato, S., Matsushita, K., Kato, H., Matsui, K., Kumagai, Y., Saitoh, T., Kawai, T., Takeuchi, O., Akira, S. (2008). Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat. Immunol. 9, 684-691. https://doi.org/10.1038/ni.1606
  16. Kirdar, S., Serter, M., Ceylan, E., Sener, A.G., Kavak, T., and Karadag, F. (2009). Adiponectin as a biomarker of systemic inflammatory response in smoker patients with stable and exacerbation phases of chronic obstructive pulmonary disease. Scand. J. Clin. Lab. Invest. 69, 219-224. https://doi.org/10.1080/00365510802474400
  17. Kubota, N., Terauchi, Y., Yamauchi, T., Kubota, T., Moroi, M., Matsui, J., Eto, K., Yamashita, T., Kamon, J., Satoh, H., et al. (2002). Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277, 25863-25866. https://doi.org/10.1074/jbc.C200251200
  18. Kumada, M., Kihara, S., Ouchi, N., Kobayashi, H., Okamoto, Y., Ohashi, K., Maeda, K., Nagaretani, H., Kishida, K., Maeda, N., et al. (2004). Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation 109, 2046-2049. https://doi.org/10.1161/01.CIR.0000127953.98131.ED
  19. Li, C.H., Wang, J.H., and Redmond, H.P. (2006). Bacterial lipoproteininduced self-tolerance and cross-tolerance to LPS are associated with reduced IRAK-1 expression and MyD88-IRAK complex formation. J. Leukoc. Biol. 79, 867-875. https://doi.org/10.1189/jlb.0905505
  20. Lindsay, R.S., Funahashi, T., Hanson, R.L., Matsuzawa, Y., Tanaka, S., Tataranni, P.A., Knowler, W.C., and Krakoff, J. (2002). Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 360, 57-58. https://doi.org/10.1016/S0140-6736(02)09335-2
  21. Liu, G., Park, Y.J., and Abraham, E. (2008). Interleukin-1 receptorassociated kinase (IRAK). -1-mediated NF-kappaB activation requires cytosolic and nuclear activity. FASEB J. 22, 2285-2296. https://doi.org/10.1096/fj.07-101816
  22. Maeda, N., Shimomura, I., Kishida, K., Nishizawa, H., Matsuda, M., Nagaretani, H., Furuyama, N., Kondo, H., Takahashi, M., Arita, Y., et al. (2002). Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 8, 731-737. https://doi.org/10.1038/nm724
  23. Mandal, P., Roychowdhury, S., Park, P.H., Pratt, B.T., Roger, T., and Nagy, L.E. (2010). Adiponectin and heme oxygenase-1 suppress TLR4/MyD88-independent signaling in rat Kupffer cells and in mice after chronic ethanol exposure. J. Immunol. 185, 4928-4937. https://doi.org/10.4049/jimmunol.1002060
  24. Matsuzawa, Y., Funahashi, T., Kihara, S., and Shimomura, I. (2004). Adiponectin and metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 24, 29-33. https://doi.org/10.1161/01.ATV.0000099786.99623.EF
  25. Okamoto, Y., Kihara, S., Ouchi, N., Nishida, M., Arita, Y., Kumada, M., Ohashi, K., Sakai, N., Shimomura, I., Kobayashi, H., et al. (2002). Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 106, 2767-2770. https://doi.org/10.1161/01.CIR.0000042707.50032.19
  26. Otero, M., Lago, R., Gomez, R., Lago, F., Dieguez, C., Gomez-Reino, J.J., and Gualillo, O. (2006). Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann. Rheum. Dis. 65, 1198-1201. https://doi.org/10.1136/ard.2005.046540
  27. Park, P.H., McMullen, M.R., Huang, H., Thakur, V., and Nagy, L.E. (2007). Short-term treatment of RAW264.7 macrophages with adiponectin increases tumor necrosis factor-alpha (TNF-alpha). expression via ERK1/2 activation and Egr-1 expression: role of TNFalpha in adiponectin-stimulated interleukin-10 production. J. Biol. Chem. 282, 21695-21703. https://doi.org/10.1074/jbc.M701419200
  28. Sattar, A.A., and Sattar, R. (2012). Globular adiponectin activates Akt in cultured myocytes. Biochemi. Biophys. Res. Commun. 424, 753-757. https://doi.org/10.1016/j.bbrc.2012.07.027
  29. Schlegel, A. (2004). Adiponectin and risk of coronary heart disease. JAMA 292, 40; author reply 40.
  30. Senolt, L., Pavelka, K., Housa, D., and Haluzik, M. (2006). Increased adiponectin is negatively linked to the local inflammatory process in patients with rheumatoid arthritis. Cytokine 35, 247-252. https://doi.org/10.1016/j.cyto.2006.09.002
  31. Takeda, K., and Akira, S. (2004). TLR signaling pathways. Seminars in immunology 16, 3-9.
  32. Tanianskii, D.A., and Denisenko, A.D. (2012). [Molecular forms of adiponectin: comparative evaluation of their correlations with parameters of carbohydrate and lipid metabolism]. Biomeditsinskaia khimiia 58, 457-466. https://doi.org/10.18097/pbmc20125804457
  33. Thomas, J.A., Allen, J.L., Tsen, M., Dubnicoff, T., Danao, J., Liao, X.C., Cao, Z., Wasserman, S.A. (1999). Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. J. Immunol. 163, 978-984.
  34. Tilg, H., and Moschen, A.R. (2006). Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6, 772-783. https://doi.org/10.1038/nri1937
  35. Tsatsanis, C., Zacharioudaki, V., Androulidaki, A., Dermitzaki, E., Charalampopoulos, I., Minas, V., Gravanis, A., and Margioris, A.N. (2005). Adiponectin induces TNF-alpha and IL-6 in macrophages and promotes tolerance to itself and other pro-inflammatory stimuli. Biochem. Biophys. Res. Commun. 335, 1254-1263. https://doi.org/10.1016/j.bbrc.2005.07.197
  36. Tsatsanis, C., Zacharioudaki, V., Androulidaki, A., Dermitzaki, E., Charalampopoulos, I., Minas, V., Gravanis, A., and Margioris, A.N. (2006). Peripheral factors in the metabolic syndrome: the pivotal role of adiponectin. Ann. N Y Acad. Sci. 1083, 185-195. https://doi.org/10.1196/annals.1367.013
  37. Turner, J.J., Smolinska, M.J., Sacre, S.M., and Foxwell, B.M. (2009). Induction of TLR tolerance in human macrophages by adiponectin: does LPS play a role? Scand. J. Immunol. 69, 329-336. https://doi.org/10.1111/j.1365-3083.2008.02224.x
  38. Waki, H., Yamauchi, T., Kamon, J., Kita, S., Ito, Y., Hada, Y., Uchida, S., Tsuchida, A., Takekawa, S., and Kadowaki, T. (2005). Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology 146, 790-796. https://doi.org/10.1210/en.2004-1096
  39. Wolf, A.M., Wolf, D., Rumpold, H., Enrich, B., and Tilg, H. (2004). Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 323, 630-635. https://doi.org/10.1016/j.bbrc.2004.08.145
  40. Yamaguchi, N., Argueta, J.G., Masuhiro, Y., Kagishita, M., Nonaka, K., Saito, T., Hanazawa, S., and Yamashita, Y. (2005). Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Lett. 579, 6821-6826. https://doi.org/10.1016/j.febslet.2005.11.019
  41. Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., et al. (2001). The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941-946. https://doi.org/10.1038/90984
  42. Yamin, T.T., and Miller, D.K. (1997). The interleukin-1 receptorassociated kinase is degraded by proteasomes following its phosphorylation. J. Biol. Chem. 272, 21540-21547. https://doi.org/10.1074/jbc.272.34.21540
  43. Yoon, H.I., Li, Y., Man, S.F.P., Tashkin, D., Wise, R.A., Connett, J.E., Anthonisen, N.A., Churg, A., Wright, J.L., and Sin, D.D. (2012). The complex relationship of serum adiponectin to COPD outcomes COPD and adiponectin. Chest 142, 893-899. https://doi.org/10.1378/chest.11-2173
  44. Zacharioudaki, V., Androulidaki, A., Arranz, A., Vrentzos, G., Margioris, A.N., and Tsatsanis, C. (2009). Adiponectin promotes endotoxin tolerance in macrophages by inducing IRAK-M expression. J. Immunol. 182, 6444-6451. https://doi.org/10.4049/jimmunol.0803694
  45. Zhao, L., Lee, J.Y., and Hwang, D.H. (2008). The phosphatidylinositol 3-kinase/Akt pathway negatively regulates Nod2-mediated NFkappaB pathway. Biochem. Pharmacol. 75, 1515-1525. https://doi.org/10.1016/j.bcp.2007.12.014
  46. Zhou, H., Yu, M., Fukuda, K., Im, J., Yao, P., Cui, W., Bulek, K., Zepp, J., Wan, Y., Kim, T.W., et al. (2013). IRAK-M mediates Toll-like receptor/IL-1R-induced $NF{\kappa}B$ activation and cytokine production. EMBO J. 32, 583-596. https://doi.org/10.1038/emboj.2013.2

Cited by

  1. Obesity as an Inflammatory Agent Can Cause Cellular Changes in Human Milk due to the Actions of the Adipokines Leptin and Adiponectin vol.8, pp.6, 2019, https://doi.org/10.3390/cells8060519