18F-FDG Whole Body PET/CT 수검자의 거리별 선량 변화에 따른 방사선 작업종사자의 유효선량 고찰: 환자 고유특성 및 응대시간 측면

The Consideration of nuclear medicine technologist's occupational dose from patient who are undergoing 18F-FDG Whole body PET/CT : Aspect of specific characteristic of patient and contact time with patient

  • 김성환 (서울아산병원 핵의학과) ;
  • 류재광 (서울아산병원 핵의학과) ;
  • 고현수 (서울아산병원 핵의학과)
  • Kim, Sunghwan (Department of Nuclear Medicine, Asan medical Center) ;
  • Ryu, Jaekwang (Department of Nuclear Medicine, Asan medical Center) ;
  • Ko, Hyunsoo (Department of Nuclear Medicine, Asan medical Center)
  • 투고 : 2018.04.14
  • 심사 : 2018.04.30
  • 발행 : 2018.05.19

초록

방사선 안전에 대한 관심과 염려가 전 세계적으로 점차 증가되고 있는 가운데, 의료 실무 현장에 종사하는 방사선 작업종사자의 외부피폭 관리 또한 중요한 이슈로 부각되고 있다. 특히, $^{18}F-FDG$WholeBodyPET/CT검사의 경우 높은 에너지의 방사성동위원소를 사용하므로 검사자의 피폭선량 저감화에 더욱 관심을 기울여야 한다. 따라서, 본 연구는 $^{18}F-FDG$ Whole Body PET/CT 수검자의 거리 별 외부선량률을 측정 및 분석하고, 방사선 작업종사자의 업무 행위 별 누적선량을 확인하여 피폭선량 저감화에 도움이 되는 주요한 요소를 알아보고자 한다. $^{18}F-FDG$WholeBody PET/CT검사를 받은 106명의 환자를 대상으로 검사 종료($75.4{\pm}3.3min$) 후 가슴을 기준 0, 10, 30, 50, 100 cm 거리에서 외부선량률을 측정하였다. 환자측면에서 외부선량률에 영향을 줄 수 있는 개별적 요인을 분석하기 위해 성별, 연령, BMI, 금식시간, 당뇨병 유무, 약물 투여정보, 크레아틴 수치 정보를 수집하였다. 수집된 정보의 통계분석은 ANOVA 분석 및 T-test를 시행하였다. 방사선 작업종사자 측면에서 피폭선량에 영향을 줄 수 있는 요인을 분석하기 위해 주사 업무를 하는 3명의 직원($T_1$, $T_2$, $T_3$)과 스캔 업무를 하는 3명의 직원($T_4$, $T_5$, $T_6$)에 각각 Personal pocket dosimeter를 착용시켜 업무시간 동안 누적된 선량을 기록하였다. 또한 방사선 작업종사자 별 응대시간을 측정하여 분석하였다. 각 거리 별 외부선량은 $246.9{\pm}37.6$, $129.9{\pm}16.7$, $61.2{\pm}9.1$, $34.4{\pm}5.9$, $13.1{\pm}2.4{\mu}Sv/hr$로 산출되었다. 환자측면에서, 근거리에서 성별, BMI, 선량, 크레아틴 수치에 의해 유의미한 차이가 있었지만, 거리가 증가할수록 그 차이는 감소하였다. 그 중 크레아틴 수치의 경우 100 cm에서 집단 간 통계적으로 유의한 차이를 보이지 않는 특징이 있었다. 환자 1명으로부터 받은 선량은 주사 업무를 하는 직원($T_1$, $T_2$, $T_3$)의 경우 0.70, 1.09, $0.55{\mu}Sv/person$이었고, 스캔($T_4$, $T_5$, $T_6$)의 경우 1.25, 0.82, $1.23{\mu}Sv/person$이었다. 응대시간이 상대적으로 적은 $T_4$직원의 경우 $T_3$, $T_5$보다 34% 낮은 누적선량을 확인할 수 있었다. 이를 토대로 환자와의 적정거리 유지와 응대시간 감소가 누적선량에 크게 작용함을 알 수 있었다. 위와 같은 점을 고려했을 때, 환자의 충분한 수분 섭취 및 배뇨, 방사선 작업종사자와 환자 간 적정거리유지(최소 100 cm이상) 및 응대시간 감소를 위해 노력해야 할 것이고, 환자의 video tracking system과 장비의 원격조정 등을 통해 피폭선량 저감화를 위해 노력해야 한다.

Purpose The purpose of this study is to investigate and analyze the external dose rates of $^{18}F-FDG$ Whole Body PET/CT patients by distance, and to identify the main factors that contribute to the reduction of radiation dose by checking the cumulative doses of nuclear medicine technologist(NMT). Materials and Methods After completion of the $^{18}F-FDG$ Whole Body PET/CT scan($75.4{\pm}3.3min$), the external dose rates of 106 patients were measured at a distance of 0, 10, 30, 50, and 100 cm from the chest. Gender, age, BMI(Body Mass Index), fasting time, diabetes mellitus, radiopharmaceutical injection information, creatine value were collected to analyze individual factors that could affect external dose rates from a patient's perspective. From the perspective of NMT, personal pocket dosimeters were worn on the chest to record accumulated dose of NMT who performed the injection task($T_1$, $T_2$ and $T_3$) and scan task($T_4$, $T_5$ and $T_6$). In addition, patient contact time with NMT was measured and analyzed. Results External dose rates from the patient for each distance were calculated as $246.9{\pm}37.6$, $129.9{\pm}16.7$, $61.2{\pm}9.1$, $34.4{\pm}5.9$, and $13.1{\pm}2.4{\mu}Sv/hr$ respectively. On the patient's aspect, there was a significant difference in the proximity of gender, BMI, Injection dose and creatine value, but the difference decreased as the distance increased. In case of dialysis patient, external dose rates for each distance were exceptionally higher than other patients. On the NMT aspect, the doses received from patients were 0.70, 1.09, $0.55{\mu}Sv/person$ for performing the injection task($T_1$, $T_2$, and $T_3$), and were 1.25, 0.82, $1.23{\mu}Sv/person$ for performing the scan task($T_4$, $T_5$, $T_6$). Conclusion we found that maintaining proper distance with patient and reducing contact time with patient had a significant effect on accumulated doses. Considering those points, efforts such as sufficient water intake and encourage of urination, maintaining the proper distance between the NMT and the patient(at least 100 cm), and reducing the contact time should be done for reducing dose rates not only patient but also NMT.

키워드

참고문헌

  1. 박훈희, 이정배, 정필균, 이종두, 원종욱, 노재훈. PET, PET/CT 방사선 종사자의 피폭 관련요인. Korean J Occup Environ Med, 2012;24(1):86-95. https://doi.org/10.35371/kjoem.2012.24.1.86
  2. Bloe F, Williams A. Personnel monitoring observations. J Nucl Med. 0000;00(0):00-00.
  3. Chiesa C, De Sanctis V, Crippa F et al. Radiation dose to technicians per nuclear medicine procedure: comparison between technetium-99m, gallium-67 and iodine-131 radiotracers and fluorine-18 fluorodeoxyglucose. Eur J Nucl Med. 1997; 24:1380-9. https://doi.org/10.1007/s002590050164
  4. Kearfott KJ, Carey JE, Clemenshaw MN, Faulkner DB. Radiatio protection design for a clinical positron emission tomography imaging suite. Health Phys. 1992; 63:581-9. https://doi.org/10.1097/00004032-199211000-00012
  5. Smith D S and Stabin M 2012 Exposure rate constants and lead shielding values for over 1,100 radionuclides Health Physics. 102 271-91. https://doi.org/10.1097/HP.0b013e318235153a
  6. Richard L. Wahl, Julia W. Buchanan Principles and Practice of Positron Emission Tomography. LIPPINCOTT WILLIAMS & WILKINS. 2002: 100-110.
  7. Hyun SH, Ahn HK, Lee JH, Choi JY, Kim B-T, Park YH, et al. (2016) Body Mass Index with Tumor $^{18}F$-FDGUptake Improves Risk Stratification in Patients with Breast Cancer. PLoSONE11(10): e0165814.doi: 10.1371/journal.pone. 0165814.
  8. TracercoTM PERSONAL ELECTRONIC DOSIMETER (PED) User Manual. P. 24.
  9. Niven E, Thompson M, Nahmias C. Absorbed dose to the adult male and female brain from $^{18}F$-Fluorodeoxyglucose. Health Phys. 2001;80:62-6. https://doi.org/10.1097/00004032-200101000-00011
  10. Aruna Kaushik, Abhinav Jaimini1, Madhavi Tripathi1. Estimation of patient dose in $^{18}F$-FDG and $^{18}F$-FDOPAPET/CTexaminations. 0000;00(0):00-00. https://doi.org/10.4103/0973-1482.119354
  11. Harvey J, Firnau G, Garnett ES. Estimation of radiation dose in man due to 6-[18F]fluoro-L-dopa. J Nucl Med. 1985;26:931-5.
  12. Cho IH, Han EO, Kim ST. Very different external radiation doses in patients undergoing PET/CT or PET/MRI scans and factors affecting them. Hellenic Journal of Nuclear Medicine. 01 Jan 2014, 17(1):13-18
  13. Matthew T. Studenskia. Effective dose to patients and staff when using a mobile PET/SPECT system. JOURN AL OF APPLIED CLINICAL MEDICAL PHYSICS. VOLUME14, NUMBER3, 2013.
  14. Ronald B. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015; 42: 328-354. https://doi.org/10.1007/s00259-014-2961-x
  15. 고현수, 김호성, 남궁창경, 윤순상, 송재혁, 류재광, et al. A study on the strategies to lower technologist occupational exposure according to the performance form in PET scan procedure. 0000;00(0):00-00.
  16. Robinson CN, Young JG, Ibbetson VJ. A study of the personal radiation dose received by nuclear medicine technologists working in a dedicated PET center. Health Phys. 2005;88(suppl 1):17S-21S. https://doi.org/10.1097/01.HP.0000147795.74975.7e
  17. Masuda Y, Kondo C, Matsuo Y, Uetani M, Kusakabe K. Comparison of imaging protocols for 18F-FDG PET/CT in overweight patients: optimizing scan duration versus administered dose. J Nucl Med. 2009;50(6):844-8. https://doi.org/10.2967/jnumed.108.060590