DOI QR코드

DOI QR Code

Electrochemical properties of KOH-activated lyocell-based carbon fibers for EDLCs

  • Jung, Jin-Young (The 5th Research and Development Institute, Agency for Defense Development) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 투고 : 2018.03.12
  • 심사 : 2018.03.27
  • 발행 : 2018.07.31

초록

키워드

참고문헌

  1. Lei C, Markoulidis F, Ashitaka Z, Lekakou C. Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC). Electrochim Acta, 92, 183 (2013). https://doi.org/10.1016/j.electacta.2012.12.092.
  2. Choi PR, Kim SG, Jung JC, Kim MS. High-energy-density activated carbon electrode for organic electric-double-layer-capacitor using carbonized petroleum pitch. Carbon Lett, 22, 70 (2017). https://doi.org/10.5714/CL.2017.22.070.
  3. Jung MJ, Jeong E, Lee SI, Lee YS. Improved capacitance characteristics of activated carbon-based electrodes by physicochemical base-tuning. J Ind Eng Chem, 18, 642 (2012). https://doi.org/10.1016/j.jiec.2011.11.055.
  4. Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. J Power Sources, 157, 11 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065.
  5. Kim J, Byun SC, Chung S, Kim S. Preparation and capacitance properties of graphene based composite electrodes containing various inorganic metal oxides. Carbon Lett, 25, 14 (2018). https://doi.org/10.5714/CL.2018.25.014.
  6. Hirunpraditkoon S, Tunthong N, Ruangchai A, Nuithitikul K. Adsorption capacities of activated carbons prepared from bamboo by KOH activation. Int J Chem Mol Eng, 5, 477 (2011).
  7. Bonnefoi L, Simon P, Fauvarque JF, Sarrazin C, Dugast A. Electrode optimisation for carbon power supercapacitors. J Power Sources, 79, 37 (1999). https://doi.org/10.1016/S0378-7753(98)00197-9.
  8. Gopiraman M, Saravanamoorthy S, Kim SH, Chung IM. Interconnected meso/microporous carbon derived from pumpkin seeds as an efficient electrode material for supercapacitors. Carbon Lett, 24, 73 (2017). https://doi.org/10.5714/CL.2017.24.73.
  9. Yoon SH, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I. KOH activation of carbon nanofibers. Carbon, 42, 1723 (2004). https://doi.org/10.1016/j.carbon.2004.03.006.
  10. Endo M, Kim YJ, Ohta H, Ishii K, Inoue T, Hayashi T, Nishimura Y, Maeda T, Dresselhaus MS. Morphology and organic EDLC applications of chemically activated AR-resin-based carbons. Carbon, 40, 2613 (2002). https://doi.org/10.1016/s0008-6223(02)00191-4.
  11. Nakagawa K, Mukai SR, Tamura K, Tamon H. Mesoporous activated carbons from phenolic resins. Chem Eng Res Des, 85, 1331 (2007). https://doi.org/10.1205/cherd06119.
  12. Wang H, Zhong Y, Li Q, Yang J, Dai Q. Cationic starch as a precursor to prepare porous activated carbon for application in supercapacitor electrodes. J Phys Chem Solid, 69, 2420 (2008). https://doi.org/10.1016/j.jpcs.2008.04.034.
  13. Albrecht W, Reintjes M, Wulfhorst B. Lyocell fibers (alternative regenerated cellulose fibers). Chem Fibers Int, 47, 298 (1997).
  14. Wu QL, Gu SY, Gong JH, Pan D. SEM/STM studies on the surface structure of a novel carbon fiber from lyocell. Synth Met, 156, 792 (2006). https://doi.org/10.1016/j.synthmet.2006.04.007.
  15. Lee D, Cho S, Kim Y, Lee YS. Influence of the pore properties on carbon dioxide adsorption of PAN-based activated carbon nanofibers. Polymer (Korea), 37, 592 (2013). https://doi.org/10.7317/pk.2013.37.5.592.
  16. Jung MJ, Jeong E, Kim Y, Lee YS. Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors. J Ind Eng Chem, 19, 1315 (2013). https://doi.org/10.1016/j.jiec.2012.12.034.
  17. Yoo HM, Min BG, Lee KH, Byun JH, Park SJ. Effect of KOH activation on electrochemical behaviors of graphite nanofibers. Polymer (Korea), 36, 321 (2012). https://doi.org/10.7317/pk.2012.36.3.321.
  18. Lillo-Roenas MA, Cazorla-Amoros D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon, 41, 267 (2003). https://doi.org/10.1016/s0008-6223(02)00279-8.
  19. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS. Carbon-based supercapacitors produced by activation of graphene. Science, 332, 1537 (2011). https://doi.org/10.1126/science.1200770.
  20. Im JS, Kang SC, Lee SH, Lee YS. Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification. Carbon, 48, 2573 (2010). https://doi.org/10.1016/j.carbon.2010.03.045.
  21. Im JS, Park SJ, Lee YS. Superior prospect of chemically activated electrospun carbon fibers for hydrogen storage. Mater Res Bull, 44, 1871 (2009). https://doi.org/10.1016/j.materresbull.2009.05.010.
  22. Jung MJ, Jeong E, Cho S, Yeo SY, Lee YS. Effects of surface chemical properties of activated carbon modified by amino-fluorination for electric double-layer capacitor. J Colloid Interface Sci, 381, 152 (2012). https://doi.org/10.1016/j.jcis.2012.05.031.
  23. Mitani S, Lee SI, Saito K, Korai Y, Mochida I. Contrast structure and EDLC performances of activated spherical carbons with medium and large surface areas. Electrochim Acta, 51, 5487 (2006). https://doi.org/10.1016/j.electacta.2006.02.040.
  24. Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39, 937 (2011). https://doi.org/10.1016/s0008-6223(00)00183-4.
  25. Gupta V, Miura N. Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochem Acta, 52, 1721 (2006). https://doi.org/10.1016/j.electacta.2006.01.074.
  26. Tan PH, Hu CY, Li F, Bai S, Hou PX, Cheng HM. Intensity and profile manifestation of resonant raman behavior of carbon nanotubes. Carbon, 40, 1131 (2002). https://doi.org/10.1016/s0008-6223(01)00261-5.
  27. Cho E, Bai BC, Im JS, Lee CW, Kim S. Pore size distribution control of pitch-based activated carbon for improvement of electrochemical property. J Ind Eng Chem, 35, 341 (2016). https://doi.org/10.1016/j.jiec.2016.01.012.