DOI QR코드

DOI QR Code

2단 베드 시스템의 하단부에서 자란 딸기의 생산성 및 과일 품질에 미치는 보광 LED의 효과

Effects of Supplemental LED Lighting on Productivity and Fruit Quality of Strawberry (Fragaria × ananassa Duch.) Grown on the Bottom Bed of the Two-Bed Bench System

  • 최효길 (공주대학교 원예학과) ;
  • 정호정 (국립원예특작과학원 시설원예연구소) ;
  • 최경이 (국립원예특작과학원 시설원예연구소) ;
  • 최수현 (국립원예특작과학원 시설원예연구소) ;
  • 채수천 (공주대학교 원예학과) ;
  • 안승원 (공주대학교 원예학과) ;
  • 강희경 (공주대학교 원예학과) ;
  • 강남준 (경상대학교 농업생명과학연구원)
  • 투고 : 2018.04.02
  • 심사 : 2018.06.27
  • 발행 : 2018.07.30

초록

본 연구의 목적은 2단 베드 벤치 시스템에서 딸기를 재배하는 동안 상단베드에 의한 차광으로 광량 부족한 하단 베드에서 자란 딸기의 생산량 및 과일 품질에 LED 보광의 영향을 확인하기 위한 것이다. 딸기 전용상토로 충진된 2단 베드 벤치에 2015년 10월부터 2016년 1월까지 점적 관수로 딸기를 재배하였다. LED 광이 처리되지 않은 상단과 하단 베드를 대조구로 이용하였고, LED 광 처리를 위해서 오전 10시부터 오후 4시까지 하단 베드에 각각 청색, 적색, 그리고 청색과 적색을 혼합한 LED 광을 $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$의 광량으로 보광 하였다. 딸기의 수확량에 있어서, 하단 베드의 청색 LED 보광된 처리에서 자란 딸기는 하단 부분 대조구와 비교하여 유의하게 증가되었으며, 상단 베드 대조구에서 자란 딸기 생산량의 90% 수준까지 증가되었다. 청색 및 혼합 LED와 상단베드에서 생육된 딸기 과일의 유리당 함량은 적색 LED와 하단 베드 부위 대조구에 비하여 높았다. 안토시아닌의 함량은 자연 광을 많이 받는 상단 베드에서 생육된 딸기 과일이 가장 높았지만, 하단베드 처리만을 비교하할 때, LED를 보광한 모든 딸기과일이 보광하지 않은 하단 부분의 대구조의 딸기 과일보다 높았다. 따라서 딸기 2단 베드 재배 시 하단 베드에 청색 LED 보광이 생산 증대 및 품질 향상에 유리할 것으로 판단된다.

The aim of this study was to confirm that effects of supplemental LED illumination on a strawberry yield and fruit quality when strawberry grown on a bottom bed to be deficient ambient light due to shading of a upper bed during cultivation by a two-bed bench system. A strawberry was cultivated as a drip irrigation system in the two-bed bench system filled with a strawberry exclusive media from October 2015 to January 2016. The upper and the bottom bed without LED illumination for growth of a strawberry were using as a control. For LED light treatments, from 10 am to 4 pm, we illuminated LEDs as $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light intensity by using blue, red, and mixing LED (blue plus red) on the strawberry plants of the bottom bed. In the yield of strawberry fruit, the strawberry grown on the bottom bed treated with the blue LED significantly increased compared with that of the bottom bed part control, and increased to by near 90% of the strawberry output of the upper bed part control. The soluble sugar content of strawberry fruit grown on the upper bed part control and on the bottom bed illuminated with blue or mixed LED was higher than that of red LED and the control of the bottom bed. The content of anthocyanin was the highest increased in the strawberry grown on the upper bed part control that received a lot of ambient light, however when comparing only the bottom bed, strawberry fruits grown on all LED treatments were higher than that of the control. Therefore, we considered that using of the blue LED light on the bottom bed of two-bed bench system during strawberry cultivation is advantageous for the increase of yield and improvement of fruit quality.

키워드

참고문헌

  1. Amodeo, G., A. Srivastava, and E. Zeiger. 1992. Vanadate inhibits blue light-stimulated swelling of Vicia guard cell protoplasts. Plant Physiology 100:1567-1570. https://doi.org/10.1104/pp.100.3.1567
  2. Bian, Z.H., Q.C. Yang, and W.K. Liu. 2015. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. Journal of the Science of Food and Agriculture 95:869-877. https://doi.org/10.1002/jsfa.6789
  3. Choi, H.G., B.Y. Moon, N.J. Kang, J.K. Kwon, K. Bekhzod, K.S. Park, and S.Y, Lee. 2014. Yield loss and quality degradation of strawberry fruits cultivated under the deficient insolation conditions by shading. Hort. Environ. Biotechnol. 55:263-270. https://doi.org/10.1007/s13580-014-0039-0
  4. Choi, H.G., B.Y. Moon, and N.J. Kang. 2015. Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Scientia Horticulturae 189:22-31. https://doi.org/10.1016/j.scienta.2015.03.022
  5. Choi, H.G., B.Y. Moon, and N.J. Kang. 2016. Correlation between strawberry (Fragaria ananassa Duch.) productivity and photosynthesis-related parameters under various growth conditions. Frontiers in Plant Science 7:1607.
  6. Choi, H.G., J.K. Kwon, B.Y. Moon, N.J. Kang, K.S. Park, M.W. Cho, and Y.C. Kim. 2013. Effect of different light emitting diode (LED) lights on the growth characteristics and the phytochemical production of strawberry fruits during cultivation. Kor. J. Hort. Sci. Technol. 31:56-64 (in Korean).
  7. Choi, S.H., G.L. Choi, H.J. Jeong, S.Y. Kim, S.C. Lee, and H.G. Choi. 2017. Optimum mutrient concentration to improve growth and quality of strawberry cultivars 'Berrystar' and 'Jukhyang' in hydriponics. Protected Hort. Plant Fac. 26:424-431 (in Korean). https://doi.org/10.12791/KSBEC.2017.26.4.424
  8. Hao, X. and A.P. Papadopoulos. 1999. Effects of supplemental lighting and cover materials on growth, photosynthesis, biomass partitioning, early yield and quality of greenhouse cucumber. Scientia Horticulturae 80:1-18. https://doi.org/10.1016/S0304-4238(98)00217-9
  9. Hidaka, K., K. Dan, H. Imanura, T. Takayama, K. Sameshima, and M. Okimura. 2015. Variety comparison of effect of supplemental lighting with LED on growth and yield in forcing culture of strawberry. Environmental Control in Biology, 53:135-143. https://doi.org/10.2525/ecb.53.135
  10. Johkan, M., K. Shoji, F. Goto, S.N. Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedilings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814.
  11. Kang, W.H., F. Zhang, J.W. Lee, and J.E. Son. 2016. Improvement of Canopy Light Distribution, Photosynthesis, and Growth of Lettuce (Lactuca Sativa L.) in Plant Factory Conditions by Using Filters to Diffuse Light from LEDs. Kor. J. Horti. Sci. Technol. 34:84-93 (in Korean).
  12. Letchamo, W. and A. Gosselin. 1995. Effects of HPS supplemental lighting and soil water levels on growth, essential oil content and composition of two thyme (Thymus vulgaris L.) clonal selections. Canadian journal of plant science 75:231-238. https://doi.org/10.4141/cjps95-044
  13. Mcavoy, R.J. and H.W. Janes. 1988. Alternative production strategies for greenhouse tomatoes using supplemental lighting. Scientia horticulturae 35:161-166 https://doi.org/10.1016/0304-4238(88)90109-4
  14. Nhut, D.T., T. Takamura, H. Watanabe, K. Okamoto, and M. Tanaka. 2003. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell, Tissue and Organ Culture 73:43-52. https://doi.org/10.1023/A:1022638508007
  15. Qi L.D., S.H.Q. Liu, L. Xu, W.Y. Yu, Q.L. Lang, and S.H.O. Hao. 2007. Effect of light qualities on accumulation of oxalate, tannin and nitrate in spinach. Trans Chin Soc Agric Eng 4:201-205.
  16. Samuoliene, G., R. Sirtautas, A. Brazaityte, and P. Duchovskis. 2012. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food chemistry 134: 1494-1499. https://doi.org/10.1016/j.foodchem.2012.03.061
  17. Wang, S.Y., C.T. Chen, and C.Y. Wang. 2009. The influence of light and maturity on fruit quality and flavonoid content of red rasberries. Food Chemistry 112:676-684. https://doi.org/10.1016/j.foodchem.2008.06.032
  18. Wojciechowska, R., O. Dlugosz-Grochowska, A. Kolton, and M. Zupnik. 2015. Effects of LED supplemental lighting on yield and some quality parameters of lamb's lettuce grown in two winter cycles. Scientia Horticulturae 187:80-86. https://doi.org/10.1016/j.scienta.2015.03.006
  19. Xu, F., S. Cao, L. Shi, W. Chen, X. Su, and Z. Yang. 2014. Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. Journal of agricultural and food chemistry 62:4778-4783. https://doi.org/10.1021/jf501120u
  20. Yoshida, H., S. Hikosaka, E. Goto, H. Takasuna, and T. Kudou. 2012. Effects of light quality and light period on flowering of everbearing strawberry in a closed plant production system. Acta Horticulturae 956:107-112.