DOI QR코드

DOI QR Code

Cariogenicity of Vitamin Supplements for Children

시판용 어린이 비타민 보충 제제의 치아 우식원성

  • No, Yoomi (Department of Pediatric Dentistry, School of Dentistry, Dankook National University) ;
  • Kim, Jongsoo (Department of Pediatric Dentistry, School of Dentistry, Dankook National University) ;
  • Yoo, Seunghoon (Department of Pediatric Dentistry, School of Dentistry, Dankook National University)
  • 노유미 (단국대학교 치의학과 소아치과학교실) ;
  • 김종수 (단국대학교 치의학과 소아치과학교실) ;
  • 유승훈 (단국대학교 치의학과 소아치과학교실)
  • Received : 2017.08.28
  • Accepted : 2017.10.11
  • Published : 2018.05.31

Abstract

The purpose of this study is to analyze the cariogenicity of vitamin supplements for children by the Caries Potentiality Index (CPI), pH drop capacity, proliferation rate of Streptococcus mutans. Four vitamin supplements were selected - Noma (NM), Cenovis Kids (CK), Animal Parade (AP), and Character Vitamin (CV). CPI value decreased in the order of AP, CV, CK, and NM. Initial values of all experimental groups showed acidity below pH 7.0. Analysis of the colony forming units of Streptococcus mutans showed that NM and CV resulted a higher proliferation rate (p < 0.05) than CK and AP (p < 0.05). Bacterial activity of the control group was lower than other groups when observed with a confocal laser scanning microscope. Considering the bacterial activity and acidity of vitamin supplements, it is necessary to pay close attention when children taken the vitamin supplements for their oral health.

본 연구의 목적은 어린이들이 섭취하는 비타민 제제들의 우식원성을 치아우식 유발지수와 Streptococcus mutans의 활성정도 및 산생성능을 통해 분석하는 것이다. 4가지 비타민, 노마(NM), 세노비스 키즈(CK), 애니멀 퍼레이드(AP), 캐릭터 비타민(CV)를 대상으로 진행하였다. 치아우식 유발지수를 산출한 결과 AP, CV, CK, NM 순으로 작아졌다. pH 측정 시 모든 실험군들의 초기 값은 산성을 나타내었다. S. mutans의 군집 형성 단위를 분석한 결과 NM, CV은 대조군에 비해 더 높은 증식률을 보였고(p < 0.05), CK와 AP (p < 0.05)는 대조군에 비해 더 낮은 증식률을 보였다. 공초점 현미경으로 관찰하였을 때 실험군들은 대조군에 비해 높은 세균 활성도를 보였다. 비타민 제제들의 세균 활성도와 산도를 고려해 볼 때, 어린이의 구강 건강을 위해서는 세심하게 고려하여 섭취해야 할 것이다.

Keywords

References

  1. Ruijie H, Mingyun Li, Richard LG : Bacterial interactions in dental biofilm. Virulence, 2:435-444, 2011. https://doi.org/10.4161/viru.2.5.16140
  2. Munoz-Sandoval C, Munoz-Cifuentes MJ, Giacaman RA, et al. : Effect of bovine milk on Streptococcus mutnas biofilm cariogenic properties and enamel and dentin demineralization. Pediatr Dent, 34:197-201, 2012.
  3. Wongkhantee S, Pantanapiradej V, Maneenut C, Tantbirojn D : Effect of acidic food and drinks on surface hardness of enamel, dentin, and tooth-coloured filling materials. J Dent, 34:214-220, 2005.
  4. Shin SC, Shim SH, Suk KH : The cariogenic potentiality index using the sugar contents and the viscosity of Korean food. JKDA, 54:752-770, 2016.
  5. Goncalves JA, Moreira EA, Borgatto AF, et al. : Associations between caries experience, nutritional status, oral hygiene, and diet in a multigenerational cohort. Pediatr Dent, 38:203-211, 2016.
  6. Kim SN, Kim SH : A survey on use of vitamin mineral supplements by children in Daejeon city and Chungcheong province in Korea. Korean J Food Culture, 25:117-125, 2010.
  7. Kim SH, Keen CL : Vitamin and mineral supplement use among children attending elementary schools in Korea. Korean J Nutr, 31:1066-1075, 2002.
  8. Koo H, Falsetta ML, Klein MI : The exopolysaccharide matrix: A virulence determinant of cariogenic biofilm. J Dent Res, 92:1065-1073, 2013. https://doi.org/10.1177/0022034513504218
  9. Lee KS, Kim NJ, Lee EH, Cho JW : Cariogenic potential index of fruits accoding to their viscosity and sugar content. Int J Clin Prev Dent, 10:255-258, 2014. https://doi.org/10.15236/ijcpd.2014.10.4.255
  10. Forssten SD, Bjorklund M, Ouwehand AC : Streptocossus mutans, caries and simulation models. Nutrients, 2:290-298, 2010. https://doi.org/10.3390/nu2030290
  11. Javed M, Chaudhry S, Khan A, et al. : Transmission of Streptococcus mutans from mother to child. Pakistan Oral & Dental Journal, 32:493-496, 2012.
  12. Wenham DG, Davies RM, Cole JA : Insoluble glucan synthesis by mutansucrase as determinant of the cariogenicity of Streptococcus mutans. J Gen Microbiol, 127:407-415, 1981.
  13. Inuine M, Koga T, Sato S, Hamada S : Synthesis adherent insoluble glucan by the concerted action of the two glucosyltransferase components of Streptococcus mutans. FEBS Lett, 143:101-104, 1982. https://doi.org/10.1016/0014-5793(82)80282-2
  14. Cole AS, Eastoe JE : The formation and properties of dental plaque in biochemistry and oral biology. 2nd ed., Butterworth and Company Ltd., 490, 1988.
  15. Kim JH, Lee YE, Song KB, et al. : Inhibition of glucan synthesis related gene expression of streptococcus mutans by xylitol treatment. J Korean Acad Pediatr Dent, 36:531-538, 2009.
  16. Marsh PD : Dental plaque as a biofilm and a microbial community - implications for health and disease, BMC Oral Health, 2006.
  17. Takahashi N, Nyvad B : Caries ecology revisited: microbial dynamics and the caries process. Caries Res, 42:409-418, 2008. https://doi.org/10.1159/000159604
  18. Shim JH, Vang MS, Lee JB, et al. : The effect of fructose on the metabolism of sucrose by Streptococcus mutans. KAP, 44:124-134, 2006.
  19. David JL, Tracey LF, Joseph EM, Jeffrey AB : Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture. FEMS Microbiol Lett, 268:158-165, 2007. https://doi.org/10.1111/j.1574-6968.2006.00576.x
  20. Kim MK, Park HR, Chung J : The effect of ions and buffers on the expression of gtfB and gtfC mRNA. Kor J Oral Maxillofac Pathol, 30:373-380, 2006.
  21. Rodrigo AG, Pia C, Cecilia MS, Ramiro JC : Cariogenic potential of commercial sweeteners in an experimental biofilm caries model on enamel. Archives of oral biology, 58:1116-1122, 2013. https://doi.org/10.1016/j.archoralbio.2013.03.005