DOI QR코드

DOI QR Code

Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams

  • Bensaid, Ismail (IS2M Laboratory, Faculty of Technology, Mechanical engineering Department, University Abou Beckr Belkaid (UABT)) ;
  • Bekhadda, Ahmed (IS2M Laboratory, Faculty of Technology, Mechanical engineering Department, University Abou Beckr Belkaid (UABT))
  • Received : 2018.03.07
  • Accepted : 2018.06.15
  • Published : 2018.03.25

Abstract

Thermal bifurcation buckling behavior of fully clamped Euler-Bernoulli nanobeam built of a through thickness functionally graded material is explored for the first time in the present paper. The variation of material properties of the FG nanobeam are graded along the thickness by a power-law form. Temperature dependency of the material constituents is also taken into consideration. Eringen's nonlocal elasticity model is employed to define the small-scale effects and long-range connections between the particles. The stability equations of the thermally induced FG nanobeam are derived via the principal of the minimum total potential energy and solved analytically for clamped boundary conditions, which lead for more accurate results. Moreover, the obtained buckling loads of FG nanobeam are validated with those existing works. Parametric studies are performed to examine the influences of various parameters such as power-law exponent, small scale effects and beam thickness on the critical thermal buckling load of the temperature-dependent FG nanobeams.

Keywords

References

  1. Ahouel, M., Houari, M.S.A., Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Struct. Eng. Mech., 20(5), 963-981.
  2. Alzahrani, E., Zenkour, A.M. and Sobhy, M. (2013), "Small scale effect on hygro-thermo-mechanical bending of nanoplates embedded in an elastic medium", Compos. Struct., 105, 163-172. https://doi.org/10.1016/j.compstruct.2013.04.045
  3. Attia, A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  4. Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Phys. E., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
  5. Barati, M.R. and Zenkour, A.M. (2018), "Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection", Mech. Adv. Mater. Struct., 1-9.
  6. Behera, L. and Chakraverty, S. (2013), "Free vibration of Euler and Tomoshenko nanobeams using boundary characteristic orthogonal polynomials", Appl. Nanosci., 4(3), 347-358. https://doi.org/10.1007/s13204-013-0202-4
  7. Benguediab, S., Semmah, A., Chaht, F.L., Mouaz, S. and Tounsi, A. (2014), "An investigation on the characteristics of bending, buckling and vibration of nanobeams via nonlocal beam theory", J. Comput. Methods, 11(6), 1350085. https://doi.org/10.1142/S0219876213500850
  8. Bensaid, I. (2017), "A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams", Adv. Nano Res., 5(2), 133-126.
  9. Bensaid, I. and Kerboua, B. (2017), "Interfacial stress analysis of functionally graded beams strengthened with a bonded hygrothermal aged composite plate", Compos. Interf., 24(2), 149-169. https://doi.org/10.1080/09276440.2016.1196333
  10. Bensaid, I., Cheikh, A., Mangouchi, A. and Kerboua, B. (2017), "Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams", Adv. Mater. Res., 6(1), 13-26. https://doi.org/10.12989/amr.2017.6.1.013
  11. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  12. Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
  13. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  14. Dehrouyeh-Semnani, A.M. (2017), "On boundary conditions for thermally loaded FG beams", J. Eng. Sci., 119, 109-127. https://doi.org/10.1016/j.ijengsci.2017.06.017
  15. Ebrahimi, F. and Barati, M.R. (2016), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  16. Ebrahimi, F. and Barati, M.R. (2017a), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 232(11), 1-12.
  17. Ebrahimi, F. and Barati, M.R. (2017b), "Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory", Eur. Phys. J. Plus., 132(1), 19. https://doi.org/10.1140/epjp/i2017-11320-5
  18. Ebrahimi, F. and Salari, E. (2015a), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. B Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
  19. Ebrahimi, F. and Salari, E. (2015b), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
  20. Ebrahimi, F. and Salari, E. (2015c), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397.
  21. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030
  22. Eringen, A.C. (1972), "Nonlocal polar elastic continua", J. Eng. Sci., 10(1), 1-16 https://doi.org/10.1016/0020-7225(72)90070-5
  23. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  24. Fleck, N.A. and Hutchinson, J.W. (1997), "Strain gradient plasticity", Adv. Appl. Mech., 33, 296-361.
  25. Heireche, H., Tounsi, A. and Benzair, A. (2008b), "Scale Effect on wave propagation of double-walled carbon nanotubes with initial axial loading", Nanotechnol., 19(18), 185703. https://doi.org/10.1088/0957-4484/19/18/185703
  26. Heireche, H., Tounsi, A., Benzair, A. and Bedia, E.A. (2008a), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Phys. E., 40(8), 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021
  27. Kheroubi, B., Benzair, A., Tounsi, A. and Semmah, A. (2016), "A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams", Adv. Nano Res., 4(4), 35-47.
  28. Kiani, Y. and Eslami, M.R. (2013a), "An exact solution for thermal buckling of annular FGM plates on an elastic medium", Compos. Part B: Eng., 45(1), 101-110. https://doi.org/10.1016/j.compositesb.2012.09.034
  29. Kiani, Y. and Eslami, M.R. (2013b), "Thermomechanical buckling of temperature dependent FGM beams", Lat. Am. J. Soil Struct., 10(1), 223-246. https://doi.org/10.1590/S1679-78252013000200001
  30. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B, 28(1-2), 251-264. https://doi.org/10.1016/S1359-835X(96)00117-0
  31. Kuzumaki, T., Miyazawa, K., Ichinose, H. and Ito, K. (1998), "Processing of carbon nanotube reinforced aluminum composite", J. Mater. Res., 13(9), 2445. https://doi.org/10.1557/JMR.1998.0340
  32. Larbi, L.O., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Mach., 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713
  33. Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
  34. Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vibr., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
  35. Mashat, D.S., Zenkour, A.M. and Sobhy, M. (2016), "Investigation of vibration and thermal buckling of nanobeams embedded in an elastic medium under various boundary conditions", J. Mech., 32(3), 277-287. https://doi.org/10.1017/jmech.2015.83
  36. Mouffoki, M., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
  37. Murmu, T. and Pradhan, S.C. (2009a), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica. E., 41(7), 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004
  38. Murmu, T. and Pradhan, S.C. (2009b), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019
  39. Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031
  40. Nguyen, N.T, Kim, N.I and. Lee, J. (2017), "Analytical solutions for bending of transversely or axially FG nonlocal beams", Steel Compos. Struct., 17(5), 641-665. https://doi.org/10.12989/scs.2014.17.5.641
  41. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
  42. Radwan, A.F. and Sobhy, M. (2018), "A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load", Phys. B: Condens. Matter, 538, 74-84. https://doi.org/10.1016/j.physb.2018.03.008
  43. Rahmani, O and Jandaghian, A.A. (2015), "Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory", Appl. Phys. A, 119(3), 1019-1032. https://doi.org/10.1007/s00339-015-9061-z
  44. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
  45. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  46. Schadler, L.S., Giannaris, S.A., and Ajayan, P.M. (1998), "Load transfer in carbon nanotube epoxy composites", Appl. Phys. Lett., 73(26), 3842-3844. https://doi.org/10.1063/1.122911
  47. She, G.L., Yuan, F.G., Ren, Y.R. (2017), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Mathema. Model., 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014
  48. Shen, H.S. and Wang, Z.X. (2014), "Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments", J. Mech. Sci, 81(4), 195-206. https://doi.org/10.1016/j.ijmecsci.2014.02.020
  49. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
  50. Sobhy, M. (2014), "Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions", Act. Mech., 225(9), 2521-2538. https://doi.org/10.1007/s00707-014-1093-5
  51. Sobhy, M. (2014), "Natural frequency and buckling of orthotropic nanoplates resting on two-parameter elastic foundations", J. Mech., 30(5), 443-453. https://doi.org/10.1017/jmech.2014.46
  52. Sobhy, M. (2015), "Levy-type solution for bending of single-layered graphene sheets in thermal environment using the two-variable plate theory", J. Mech. Sci, 90, 171-178. https://doi.org/10.1016/j.ijmecsci.2014.11.014
  53. Sobhy, M. (2016), "Hygrothermal vibration of orthotropic double-layered graphene sheets embedded in elastic medium using the two-variable plate theory", Appl. Math. Model., 40(1), 85-99. https://doi.org/10.1016/j.apm.2015.04.037
  54. Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3-D nonlocal hyperbolic plate theory for vibration and buckling of FGM nanoplates", J. Appl. Mech., 9(1), 1750008. https://doi.org/10.1142/S1758825117500089
  55. Sobhy, M. and Zenkour, A.M. (2018), "Thermal buckling of double-layered graphene system in humid environment", Mater. Res. Exp., 5(1), 015028. https://doi.org/10.1088/2053-1591/aaa2ba
  56. Thai, H.T. (2012a), "A nonlocal beam theory for bending, buckling and vibration of nanobeams", J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
  57. Thai, H.T. and Thuc, P.V. (2012b), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling and vibration of nanobeams", J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009
  58. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories", Compos. Part B: Eng., 67, 490-509. https://doi.org/10.1016/j.compositesb.2014.08.012
  59. Touloukian, Y.S, (1967), Thermophysical Properties of High Temperature Solid Materials: Vol. 1, Elements, Macmillan, New York, U.S.A.
  60. Tounsi, A., Semmah, A. and Bousahla, A.A. (2013a), "Thermal buckling behavior of nanobeams using an efficient higher-order nonlocal beam theory", J. Nanomech. Micromech., 3(3), 37-42. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000057
  61. Tounsi, A., Benguediab, S., Houari, M.S.A. and Semmah, A. (2013b), "A new nonlocal beam theory with thickness stretching effect for nanobeams", J. Nanosci., 12(4), 1-8.
  62. Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648
  63. Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method", Meccan., 50(5), 1331-1342. https://doi.org/10.1007/s11012-014-0094-8
  64. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress-based strain gradient theory for elasticity", J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  65. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  66. Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012
  67. Zenkour, A.M. and Sobhy, M. (2011), "Thermal buckling of functionally graded plates resting on elastic foundations using trigonometric theory", J. Therm. Strut., 34(11), 1119-1138. https://doi.org/10.1080/01495739.2011.606017
  68. Zenkour, A.M. and Sobhy, M. (2013), "Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler-Pasternak elastic substrate medium", Pys. E: Low-dimens. Syst. Nanostruct., 53, 251-259. https://doi.org/10.1016/j.physe.2013.04.022
  69. Zhang, D.G. (2013), "Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory", Compos. Struct., 100(5) 121-126. https://doi.org/10.1016/j.compstruct.2012.12.024
  70. Zhang, D.G. and Zhou, Y.H. (2008) "A theoretical analysis of FGM thin plates based on physical neutral surface", Comp. Mater. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016
  71. Zhou, S.J. and Li, Z.Q. (2001), "Length scales in the static and dynamic torsion of a circular cylindrical micro-bar", J. Shandong Univ. Sci. Technol, Nat. Sci., 31(5), 401-407.
  72. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64(2), 145-153.

Cited by

  1. Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations vol.6, pp.3, 2019, https://doi.org/10.12989/aas.2019.6.3.207