DOI QR코드

DOI QR Code

Forced vibration analysis of cracked functionally graded microbeams

  • Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University, Yildirim Campus)
  • 투고 : 2017.12.11
  • 심사 : 2018.04.03
  • 발행 : 2018.03.25

초록

Forced vibration analysis of a cracked functionally graded microbeam is investigated by using modified couple stress theory with damping effect. Mechanical properties of the functionally graded beam change vary along the thickness direction. The crack is modelled with a rotational spring. The Kelvin-Voigt model is considered in the damping effect. In solution of the dynamic problem, finite element method is used within Timoshenko beam theory in the time domain. Influences of the geometry and material parameters on forced vibration responses of cracked functionally graded microbeams are presented.

키워드

참고문헌

  1. Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704.
  2. Ahouel, M., Houari, M.S.A., Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  3. Aissani, K., Bouiadjra, M.B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., Int. J., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743
  4. Akbas, S.D. (2013), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Math. Problems Eng.
  5. Akbas, S.D. (2015a), "On Post-Buckling Behavior of Edge Cracked Functionally Graded Beams Under Axial Loads", Int. J. Struct. Stabil. Dyn., 15(4), 1450065. DOI: 10.1142/S0219455414500655
  6. Akbas, S.D. (2015b), "Post-Buckling Analysis of Axially Functionally Graded Three Dimensional Beams", Int. J. Appl. Mech., 7(3),1550047. DOI: 10.1142/S1758825115500477
  7. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
  8. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
  9. Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X
  10. Akbas S.D. (2017b), "Static, Vibration, and Buckling Analysis of Nanobeams", In: Nanomechanics, (A. Vakhrushev Ed.), InTech, pp.123-137.
  11. Akbas, S.D. (2017c), "Stability of A Non-Homogenous Porous Plate by Using Generalized Differantial Quadrature Method", Int. J. Eng. Appl. Sci., 9(2), 147-155.
  12. Akbas, S.D. (2017d), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009
  13. Akbas, S.D. (2017e), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 24(5), 579-589.
  14. Akbas, S.D. (2017f), "Vibration and static analysis of functionally graded porous plates", J. Appl. Computat. Mech., 3(3), 199-207.
  15. Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013
  16. Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stresses, 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397
  17. Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020
  18. Akgoz, B. and Civalek, O. (2014), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011
  19. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  20. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
  21. Ansari, R., Gholami, R. and Sahmani, S. (2014), "Free vibration of size-dependent functionally graded microbeams based on the strain gradient Reddy beam theory", Int. J. Computat. Methods Eng. Sci. Mech., 15(5), 401-412. https://doi.org/10.1080/15502287.2014.915249
  22. Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H. and Rahaeifard, M. (2010), "On the size-dependent behavior of functionally graded micro-beams", Mater. Des., 31(5), 2324-2329. https://doi.org/10.1016/j.matdes.2009.12.006
  23. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011
  24. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.; Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  25. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  26. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zerothorder shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., Int. J., 62(6), 695-702.
  27. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  28. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., Int. J., 19(6), 601-614.
  29. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  30. Boukhari, A., Atmane, H.A., Tounsi, A., Adda, B. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., Int. J., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  31. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  32. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  33. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Computat. Methods, 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  34. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  35. Chorsi, M.T., Azizi, S. and Bakhtiari-Nejad, F. (2017), "Nonlinear dynamics of a functionally graded piezoelectric micro-resonator in the vicinity of the primary resonance", J. Vib. Control, 23(3), 400-413. https://doi.org/10.1177/1077546315580051
  36. Chakraborty, A., Mahapatra, D.R. and Gopalakrishnan, S. (2002), "Finite element analysis of free vibration and wave propagation in asymmetric composite beams with structural discontinuities", Compos. Struct., 55(1), 23-36. https://doi.org/10.1016/S0263-8223(01)00130-1
  37. Demir, C. and Civalek, O. (2017), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016
  38. Ebrahimi, F. and Barati, M.R. (2016a), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 1077546316646239. https://doi.org/10.1177/1077546316646239
  39. Ebrahimi, F. and Salari, E. (2015), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
  40. Ebrahimi, F. and Shafiei, N. (2016b), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., Int. J., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
  41. Ebrahimi, F., Barati, M.R. and Haghi, P. (2017), "Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory", J. Vib. Control, 1077546317711537. https://doi.org/10.1177/1077546317711537
  42. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  43. Fang, T.H., Chang, W.J. and Liao, S.C. (2003), "Simulated nanojet ejection process by spreading droplets on a solid surface", J. Phys.; Condensed Matter, 15(49), 8263-8271. https://doi.org/10.1088/0953-8984/15/49/005
  44. Fang, T.H. and Chang, W.J. (2003), "Sensitivity analysis of scanning near-field optical microscope probe", Optics Laser Technol., 35(4), 267-271. https://doi.org/10.1016/S0030-3992(03)00004-5
  45. Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", Mater. Lett., 57(20), 2995-2999. https://doi.org/10.1016/S0167-577X(02)01419-2
  46. Hadji, L. (2017), "Analysis of functionally graded plates using a sinusoidal shear deformation theory", Smart Struct. Syst., Int. J., 19(4), 441-448. https://doi.org/10.12989/sss.2017.19.4.441
  47. Hadji, L., Khelifa, Z. and Adda Bedia, E.A. (2016), "A New Higher Order Shear Deformation Model for Functionally Graded Beams", KSCE J. Civil Eng., 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0
  48. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  49. Hasanyan, D.J., Batra, R.C. and Harutyunyan, S. (2008), "Pull-in instabilities in functionally graded microthermoelectromechanical systems", J. Therm. Stresses, 31(10), 1006-1021. https://doi.org/10.1080/01495730802250714
  50. Hasheminejad, B.S.M., Gheshlaghi, B., Mirzaei, Y. and Abbasion, S. (2011), "Free transverse vibrations of cracked nanobeams with surface effects", Thin Solid Films, 519(8), 2477-2482. https://doi.org/10.1016/j.tsf.2010.12.143
  51. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  52. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., Int. J., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  53. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374.
  54. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008
  55. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., Int. J., 64(4), 391-402.
  56. Kocaturk, T. and Akbas, S.D. (2013a), "Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties", Steel Compos. Struct., Int. J., 15(5), 481-505. https://doi.org/10.12989/scs.2013.15.5.481
  57. Kocaturk, T. and Akbas, S.D. (2013b), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., Int. J., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
  58. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  59. Liu, P. and Reddy, J.N. (2011), "A Nonlocal curved beam model based on a modified couple stress theory", Int. J. Struct. Stabil. Dyn., 11(3), 495-512. https://doi.org/10.1142/S0219455411004233
  60. Liu, S.J., Qi, S.H. and Zhang, W.M. (2013), "Vibration behavior of a cracked micro-cantilever beam under electrostatic excitation", Zhendong yu Chongji/J. Vib. Shock, 32, 41-45.
  61. Loya, J., Lopez-Puente, J., Zaera, R. and Fernandez-Saez, J. (2009), "Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model", J. Appl. Phys., 105(4), 044309. https://doi.org/10.1063/1.3068370
  62. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solids Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
  63. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  64. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  65. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Rational Mech. Anal., 11(1), 415-448. https://doi.org/10.1007/BF00253946
  66. Mindlin, R.D. (1963), "Influence of couple-stresses on stress concentrations", Experim. Mech., 3(1), 1-7. https://doi.org/10.1007/BF02327219
  67. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383.
  68. Nejad, M.Z. and Hadi, A. (2016a), "Eringen's non-local elasticity theory for bending analysis of bidirectional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005
  69. Nejad, M.Z. and Hadi, A. (2016b), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011
  70. Newmark, N.M. (1959), "A method of computation for structural dynamics", ASCE Eng. Mech. Div., 85(3), 67-94.
  71. Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355-2359. https://doi.org/10.1088/0960-1317/16/11/015
  72. Peng, X.-L., Li. X.-F., Tang, G.-J. and Shen, Z.-B. (2015), "Effect of scale parameter on the deflection of a nonlocal beam and application to energy release rate of a crack", ZAMM - J. Appl. Math. Mech., 95(12), 1428-1438. https://doi.org/10.1002/zamm.201400132
  73. Roostai, H. and Haghpanahi, M. (2014), "Vibration of nanobeams of different boundary conditions with multiple cracks based on nonlocal elasticity theory", Appl. Math. Model., 38(3), 1159-1169. https://doi.org/10.1016/j.apm.2013.08.011
  74. Salamat-Talab, M., Nateghi, A. and Torabi, J. (2012), "Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory", Int. J. Mech. Sci., 57(1), 63-73. https://doi.org/10.1016/j.ijmecsci.2012.02.004
  75. Sedighi, H.M. (2014), "The influence of small scale on the pull-in behavior of nonlocal nanobridges considering surface effect, Casimir and Van der Waals attractions", Int. J. Appl. Mech., 6(3), 1450030. https://doi.org/10.1142/S1758825114500306
  76. Sedighi, H.M., Koochi, A. and Abadyan, M. (2014), "Modeling the size dependent static and dynamic pullin instability of cantilever nanoactuator based on strain gradient theory", Int. J. Appl. Mech., 6(5), 1450055. https://doi.org/10.1142/S1758825114500550
  77. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007
  78. Stamenkovic, M., Karlicic, D., Goran, J. and Kozic, P. (2016), "Nonlocal forced vibration of a double single-walled carbon nanotube system under the influence of an axial magnetic field", J. Mech. Mater. Struct., 11(3), 279-307. https://doi.org/10.2140/jomms.2016.11.279
  79. Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
  80. Simsek, M., Kocaturk, T. and Akbas, S.D. (2013), "Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory", Compos. Struct., 95, 740-747. https://doi.org/10.1016/j.compstruct.2012.08.036
  81. Tadi Beni, Y., Jafari, A. and Razavi, H. (2015), "Size effect on free transverse vibration of cracked nanobeams using couple stress theory", Int. J. Eng., 28(2), 296-304
  82. Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
  83. Torabi, K. and Nafar Dastgerdi, J. (2012), "An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model", Thin Solid Films, 520(21), 6595-6602. https://doi.org/10.1016/j.tsf.2012.06.063
  84. Toupin, R.A. (1962), "Elastic materials with couple stresses", Arch. Rational Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945
  85. Wang, C.M., Xiang, Y., Yang, J. and Kitipornchai, S. (2012), "Buckling of nano-rings/arches based on nonlocal elasticity", Int. J. Appl. Mech., 4(3), 1250025. https://doi.org/10.1142/S1758825112500251
  86. Wang, K. and Wang, B. (2015), "Timoshenko beam model for the vibration analysis of a cracked nanobeam with surface energy", J. Vib. Control. DOI: 10.1177/1077546313513054
  87. Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded Poly-SiGe Layers for MEMS Applications", Mater. Sci. Forum, 492, 255-260.
  88. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  89. Yang, F., Chong, A., Lam, D. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  90. Yayli, M.O. and Cercevik, A.E. (2015), "Axial vibration analysis of cracked nanorods with arbitrary boundary conditions", J. Vibroeng., 17(6), 2907-2921.
  91. Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-Pournaki, I. and Shabani, R. (2014), "Thermally induced vibration of a functionally graded micro-beam subjected to a moving laser beam", Int. J. Appl. Mech., 6(6), 1450066. https://doi.org/10.1142/S1758825114500665
  92. Zhang, J. and Fu, Y. (2012), "Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory", Meccanica, 47(7), 1649-1658. https://doi.org/10.1007/s11012-012-9545-2
  93. Zouatnia, N., Hadji, L. and Kassoul, A. (2017), "An analytical solution for bending and vibration responses of functionally graded beams with porosities", Wind Struct., Int. J., 25(4), 329-342.

피인용 문헌

  1. Effectiveness of piezoelectric fiber reinforced composite laminate in active damping for smart structures vol.31, pp.4, 2018, https://doi.org/10.12989/scs.2019.31.4.387
  2. Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2018, https://doi.org/10.12989/scs.2020.36.3.293
  3. Thermal stress and magnetic effects on nonlinear vibration of nanobeams embedded in nonlinear elastic medium vol.43, pp.10, 2018, https://doi.org/10.1080/01495739.2020.1780175
  4. Application of Soft Computing Paradigm to Large Deformation Analysis of Cantilever Beam under Point Load vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/2182693
  5. Forced vibration of a functionally graded porous beam resting on viscoelastic foundation vol.24, pp.1, 2018, https://doi.org/10.12989/gae.2021.24.1.091
  6. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2018, https://doi.org/10.12989/sem.2021.77.2.217
  7. Parametric vibration analysis of single-walled carbon nanotubes based on Sanders shell theory vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.165
  8. Static analysis of cutout microstructures incorporating the microstructure and surface effects vol.38, pp.5, 2018, https://doi.org/10.12989/scs.2021.38.5.583
  9. Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories vol.10, pp.3, 2018, https://doi.org/10.12989/anr.2021.10.3.235
  10. Vibration of multilayered functionally graded deep beams under thermal load vol.24, pp.6, 2018, https://doi.org/10.12989/gae.2021.24.6.545
  11. Identification and evaluation of cracks in electrostatically actuated resonant gas sensors using Harris Hawk / Nelder Mead and perturbation methods vol.28, pp.1, 2018, https://doi.org/10.12989/sss.2021.28.1.121
  12. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
  13. Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.183
  14. An investigation of mechanical properties of kidney tissues by using mechanical bidomain model vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.193