DOI QR코드

DOI QR Code

THE COMPLETE CONVERGENCE FOR DEPENDENT RANDOM VARIABLES IN HILBERT SPACES

  • 투고 : 2018.05.29
  • 발행 : 2018.08.15

초록

We study the complete convergence for sequences of dependent random variables in Hilbert spaces. Results are obtained for negatively associated random variables and ${\phi}$-mixing random variables in Hilbert spaces.

키워드

참고문헌

  1. P. Billingsley, Convergence of probability measures, John Wiley and Sons. Inc. New York, 1968.
  2. A. Gut, Complete convergence for arrays, Period. Math. Hungar. 25 (1992), 51-75. https://doi.org/10.1007/BF02454383
  3. N. T. T. Hien and L. V. Thanh, On the weak laws of large numbers for sums of negatively associated random vectors in Hilbert spaces, Statist. Probab. Lett. 107 (2015), 236-245. https://doi.org/10.1016/j.spl.2015.08.030
  4. N. V. Huan, On the complete convergence for sequences of random vectors in Hilbert spaces, Acta Math. Hungar. 147 (2015), no. 1, 205-219. https://doi.org/10.1007/s10474-015-0516-7
  5. N. V. Huan, N. V. Quang, and N. T. Thuan, Baum-Katz type theorems for coordinatewise negatively associated random vectors in Hilbert spaces, Acta. Math. Hungar. 144 (2014), no. 1, 132-149. https://doi.org/10.1007/s10474-014-0424-2
  6. I. A. Ibragimov and Y. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971.
  7. K. Joag-Dev and F. Proschan, Negative association of random variables with applications, Ann. Stat. 11 (1983), 286-295. https://doi.org/10.1214/aos/1176346079
  8. M. H. Ko, T. S. Kim, and K. H. Han, A note on the almost sure convergence for dependent random variables in a Hilbert space, J. Theoret. Probab. 22 (2009), 506-513. https://doi.org/10.1007/s10959-008-0144-z
  9. J. J. Liu, P. Y. Chen, and S. X. Gan, The laws of large numbers for ${\phi}$-mixing sequences, (Chiness) J. Math. (Wuhan), 18 (1998), 91-95.
  10. Y. Miao, Hajeck-Renyi inequality for dependent random variables in Hilbert space and applications, Revista De La Union Mathematica Argentina, 53 (2012), no. 1, 101-112.
  11. L. V. Thanh, On the almost sure convergence for dependent random vectors in Hilbert spaces, Acta. Math. Hungar. 139 (2013), 276-285. https://doi.org/10.1007/s10474-012-0275-7
  12. L. X. Zhang, Strassen's law of the iterated logarithm for negatively associated random vectors, Stoch. Process. Appl. 95 (2001), no. 2, 311-328. https://doi.org/10.1016/S0304-4149(01)00107-7