References
- P. Billingsley, Convergence of probability measures, John Wiley and Sons. Inc. New York, 1968.
- A. Gut, Complete convergence for arrays, Period. Math. Hungar. 25 (1992), 51-75. https://doi.org/10.1007/BF02454383
- N. T. T. Hien and L. V. Thanh, On the weak laws of large numbers for sums of negatively associated random vectors in Hilbert spaces, Statist. Probab. Lett. 107 (2015), 236-245. https://doi.org/10.1016/j.spl.2015.08.030
- N. V. Huan, On the complete convergence for sequences of random vectors in Hilbert spaces, Acta Math. Hungar. 147 (2015), no. 1, 205-219. https://doi.org/10.1007/s10474-015-0516-7
- N. V. Huan, N. V. Quang, and N. T. Thuan, Baum-Katz type theorems for coordinatewise negatively associated random vectors in Hilbert spaces, Acta. Math. Hungar. 144 (2014), no. 1, 132-149. https://doi.org/10.1007/s10474-014-0424-2
- I. A. Ibragimov and Y. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971.
- K. Joag-Dev and F. Proschan, Negative association of random variables with applications, Ann. Stat. 11 (1983), 286-295. https://doi.org/10.1214/aos/1176346079
- M. H. Ko, T. S. Kim, and K. H. Han, A note on the almost sure convergence for dependent random variables in a Hilbert space, J. Theoret. Probab. 22 (2009), 506-513. https://doi.org/10.1007/s10959-008-0144-z
-
J. J. Liu, P. Y. Chen, and S. X. Gan, The laws of large numbers for
${\phi}$ -mixing sequences, (Chiness) J. Math. (Wuhan), 18 (1998), 91-95. - Y. Miao, Hajeck-Renyi inequality for dependent random variables in Hilbert space and applications, Revista De La Union Mathematica Argentina, 53 (2012), no. 1, 101-112.
- L. V. Thanh, On the almost sure convergence for dependent random vectors in Hilbert spaces, Acta. Math. Hungar. 139 (2013), 276-285. https://doi.org/10.1007/s10474-012-0275-7
- L. X. Zhang, Strassen's law of the iterated logarithm for negatively associated random vectors, Stoch. Process. Appl. 95 (2001), no. 2, 311-328. https://doi.org/10.1016/S0304-4149(01)00107-7