Acknowledgement
Supported by : Ministry of Land, infrastructure and Transport of Korea, National Research Foundation of Korea (NRF)
References
- An, Y.K., Kim, J.M. and Sohn, H. (2014), "Laser lock-in thermography for detection of surface-breaking fatigue cracks on uncoated steel structures", NDT & E Int., 65, 54-63. https://doi.org/10.1016/j.ndteint.2014.03.004
- An, Y.K., Yang, J.Y., Hwang, S.K. and Sohn, H. (2015), "Line laser lock-in thermography for instantaneous imaging of cracks in semiconductor chips", Opt. Laser. Eng., 73, 128-136. https://doi.org/10.1016/j.optlaseng.2015.04.013
- Brown, D.C. (1971), "Close-range camera calibration", Photogrammetric Engineering, 37(8), 855-866.https://doi.org/10.1.1.14.6358
- Chang, P.C., Flatau, A. and Liu, S.C. (2003), "Review paper: health monitoring of civil infrastructure", Struct. Health Monit., 2(3), 257-267. https://doi.org/10.1177/1475921703036169
- Chen, P.W. and Cheung, D.D.L. (1993), "Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection", Smart Mater. Struct., 2, 22-30. https://doi.org/10.1088/0964-1726/2/1/004
- Eschmann, C., Kuo, C.M. and Boller, C. (2012), "Unmanned aircraft systems for remote building inspection and monitoring", Proceedings of the 6th European Workshop on Structural Health Monitoring, Dresden, Germany, July.
- FMS (2017), http://www.fms.or.kr
- Han, B., Zhang, K., Yu, X., Kwon, E. and Ou, J. (2012), "Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites", Cement Concrete Compos., 34(6), 794-800. https://doi.org/10.1016/j.cemconcomp.2012.02.012
- Hennriques, M.J. and Roque, D. (2015), "Unmanned Aerial Vehicles (UAV) as a support to visual Inspections of concrete dams", Proceedings of the 2nd International Dam World Conference, Lisbon, Portugal, April.
- Hahn, S.L. (1996), Hilbert Transforms in Signal Processing, Artech House, Norwood, United States.
- Hall, K.S. and Popovics, J.S. (2016), "Air-coupled ultrasonic tomography of solids: 2 Application to concrete elements", Smart Struct. Syst., 17(1), 31-43. http://dx.doi.org/10.12989/sss.2016.17.1.031
- Jahanshahi, M.R., Masri, S.F., Padgett, C.W. and Sukhatme, G.S. (2013), "An innovative methodology for detection and quantification of cracks through incorporation of depth perception", Mach. Vision Appl., 24(2), 227-241. https://doi.org/10.1007/s00138-011-0394-0
- Koch, C., Paal, S., Rashidi, A., Zhu, Z., Konig, M. and Brilakis, I. (2014), "Achievements and challenges in machine vision-based inspection of large concrete structures", Adv. Struct. Eng., 17(3), 303-318. https://doi.org/10.1260/1369-4332.17.3.303
- Kim, H.J., Ahn, E.J., Cho, S.J., Shin, M.S. and Sim, S.H. (2017), "Comparative analysis of image binarization methods for crack identification in concrete structures", Cement Concrete Res., 99, 53-61. https://doi.org/10.1016/j.cemconres.2017.04.018
- Kim, J., Kim, S., Park, J. and Nam, J. (2015), "Development of crack detection system with unmanned aerial vehicles and digital image processing", Proceedings of the Advances in Structural Engineering and Mechanics (ASEM15), Incheon, Korea, August.
- Kanatani, K., Ohta, N. and Kanazawa, Y. (2000), "Optimal homography computation with a reliability measure", IEICE T. Inform. Syst., 83(7), 13691374.
- Lee, F.W., Chai, H.K. and Lim, K.S. (2017), "Characterizing concrete surface notch using Rayleigh wave phase velocity and wavelet parametric analyses", Constr. Build. Mater., 136, 627-642. https://doi.org/10.1016/j.conbuildmat.2016.08.145
- Liu, Y., Cho, S., Spencer, B.F. and Fan, J. (2014), "Automated assessment of cracks on concrete surfaces using adaptive digital image processing", Smart Struct. Syst., 14(4), 719-741. http://dx.doi.org/10.12989/sss.2014.14.4.719
- Sham, F. C., Chen, N. and Long, L. (2008), "Surface crack detection by flash thermography on concrete surface", Insight: Non-Destructive Testing and Condition Monitoring, 50(5), 240-243. https://doi.org/10.1784/insi.2008.50.5.240
- Tawie, R., Lee, H.K. and Park, S.H. (2010), "Non-destructive evaluation of concrete quality using PZT transducers" Smart Struct. Syst., 6(7), 851-866. http://dx.doi.org/10.12989/sss.2010.6.7.851
- Vidas, S., Lakemond, R., Denman, S., Fookes, C., Sridharan, S. and Wark, T. (2012), "A mask-based approach for the geometric calibration of thermal-infrared cameras", IEEE T. Instrum. Measurement, 61(6), 1625-1635. https://doi.org/10.1109/TIM.2012.2182851
- Yang, J.Y., Hwang, S.K., An, Y.K., Lee, K.H. and Sohn, H. (2016), "Multi-spot laser lock-in thermography for real-time imaging of cracks in semiconductor chips during a manufacturing process", J. Mater. Process. Tech., 229, 94-101. https://doi.org/10.1016/j.jmatprotec.2015.09.020
- Zhang, Z. (2010), "A flexible new technique for camera calibration", IEEE T. Pattern Anal. Mach. Intell., 22(11), 1330-1334.
- Zhang, Y., Larose, E., Moreau, L. and D'Ozouville, G. (2017), "Three-dimensional in-situ imaging of cracks in concrete using diffuse ultrasound", Struct. Health Monit., I-6, 1-9. https://doi.org/10.1016/j.aqpro.2013.07.003
- Zenzinger, G., Bamberg, J., Satzger, W. and Carl, V. (2007), "Thermographic crack detection by eddy current excitation", Nondestruct. Test. Eval., 22(2-3), 101-111. https://doi.org/10.1080/10589750701447920
Cited by
- Multi-Channel Electrical Impedance-Based Crack Localization of Fiber-Reinforced Cementitious Composites under Bending Conditions vol.8, pp.12, 2018, https://doi.org/10.3390/app8122582
- Automated crack evaluation of a high‐rise bridge pier using a ring‐type climbing robot vol.36, pp.1, 2018, https://doi.org/10.1111/mice.12550