DOI QR코드

DOI QR Code

SiO2/MgCl2 이원 담체에 담지된 (n-BuCp)2ZrCl2 합성과 에틸렌-1-헥센 공중합

Preparation of (n-BuCp)2ZrCl2 Catalyst Supported on SiO2/MgCl2 Binary Support and its Ethylene-1-hexene Copolymerization

  • Carino, Ann Charise (Department of Chemical Engineering, Kongju National University) ;
  • Park, Sang Jun (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
  • 투고 : 2018.05.09
  • 심사 : 2018.05.16
  • 발행 : 2018.08.10

초록

본 연구에서는 $(n-BuCp)_2ZrCl_2$$SiO_2/MgCl_2$ 이원 지지체에 담지시켰다. 촉매를 담지하기 전, $SiO_2/MgCl_2$ 이원 지지체를 3종의 알킬알루미늄 화합물, 트리메틸알루미늄, 트리에틸알루미늄 또는 에틸알루미늄 세스퀴클로라이드로 표면처리 하였다. 합성된 표면 처리된 $SiO_2/MgCl_2$에 담지된 메탈로센 촉매로 에틸렌 및 1-헥센의 공중합을 하였다. 촉매 특성 및 성능을 BET, XPS 분석, ICP-AES 분석 및 FE-SEM을 통해 비교 분석하였다. 생성된 공중합체를 DSC 분석, GPC 분석, 13C-NMR 분석 및 FE-SEM을 통해 비교 분석하였다. 합성된 $SiO_2/MgCl_2$ 담지된 메탈로센 촉매의 분석은 이들 촉매의 Zr 함량이 $SiO_2$에 담지된 촉매에 비해 상대적으로 낮다는 것을 보여 주었다. 이것은 재결정된 $MgCl_2$ 및 알킬알루미늄의 존재로 인한 $SiO_2$의 표면적 감소에 기인할 수 있다. 또한, $SiO_2/MgCl_2$ 담지된 메탈로센 촉매는 $SiO_2$에 담지된 메탈로센 촉매보다 활성이 높았으며 이 중 EASC-표면 처리 이원 지지체에 담지된 메탈로센촉매가 1.9 kg PE/($mmol-Zr^*hr$)의 가장 높은 활성을 보였다. 이것은 EASC가 강한 루이스 산으로 작용하기 때문이다. 또한, 사용된 알킬알루미늄의 리간드가 클수록 생성된 중합체의 입자 표면이 더 거칠었다.

In this study, $(n-BuCp)_2ZrCl_2$, was supported on $SiO_2/MgCl_2$ binary support. Before supporting the catalyst, the $SiO_2/MgCl_2$ binary support was surface treated with three different alkyl aluminum compound, namely trimethylaluminum, triethylaluminum, and ethylaluminum sesquichloride. The synthesized surface-treated $SiO_2/MgCl_2$ supported metallocene catalysts were used for the copolymerization of ethylene and 1-hexene. Their catalytic properties and performances were analyzed through BET, XPS analysis, ICP-AES analysis, and FE-SEM. While the resulting copolymers were analyzed through DSC analysis, GPC analysis, 13C-NMR analysis, and FE-SEM. The analysis of synthesized surface-treated $SiO_2/MgCl_2$ supported metallocene catalysts showed that the Zr content of these catalysts is relatively lower compared to that of the catalyst supported on $SiO_2$. This could be attributed to the reduction in the surface area of $SiO_2$ due to the presence of recrystallized $MgCl_2$ and alkyl aluminum. Furthermore, they exhibited a better copolymerization activity compared to that of $SiO_2$ supported catalyst, particularly the EASC-surface treated binary support, which has the highest activity of 1.9 kg PE/($mmol-Zr^*hr$) because EASC acts as a strong Lewis acid. It could also be observed that the larger the ligand of alkyl aluminum used, the rougher the particle surface of the resulting polymer.

키워드

참고문헌

  1. D.-H. Lee and K.-K. Yoon, Polymerization of ethylene by using zirconocene catalyst anchored on silica with trisiloxane and pentamethylene spacers, Macromol. Rapid Commun., 18, 427-431 (1997). https://doi.org/10.1002/marc.1997.030180510
  2. B. Monrabal, J. Blanco, J. Nieto, and J. B. P. Soares, Characterization of homogeneous ethylene/1-octene copolymers made with a single-site catalyst, CRYSTAF analysis and calibration, J. Polym. Sci. Polym. Chem., 37, 89-93 (1999). https://doi.org/10.1002/(SICI)1099-0518(19990101)37:1<89::AID-POLA10>3.0.CO;2-#
  3. W. Kaminsky, A. Bark, and R. Steiger, Stereospecific polymerization by metallocene/aluminoxane catalysts, J. Mol. Catal., 74, 109-119 (1992). https://doi.org/10.1016/0304-5102(92)80228-9
  4. T. Yamasaki, Structure and lewis acid sites in alumoxane compounds, Catal. Today, 23, 425-429 (1995). https://doi.org/10.1016/0920-5861(94)00159-Y
  5. S. Patthamasang, B. Jongsomjit, and P. Praserthdam, Effect of EtOH/$MgCl_2$ molar ratios on the catalytic properties of $MgCl_2-SiO_2/TiCl_4$ Ziegler-Natta catalyst for ethylene polymerization, Molecules, 16, 8332-8342 (2011). https://doi.org/10.3390/molecules16108332
  6. S. Sensarma and S. Sivaram, Polymerization of ethylene using a $SiO_2-MgCl_2$ supported bis(cyclopentadienyl)zirconium (IV) or titanium (IV) dichloride catalyst, Polym. Int., 51, 417-423 (2002). https://doi.org/10.1002/pi.868
  7. H. S. Cho, Y. H. Choi, and W. Y. Lee, Characteristics of ethylene polymerization over Ziegler-Natta/metallocene catalysts: Comparison between hybrid and mixed catalysts, Catal. Today, 63, 523-530 (2000). https://doi.org/10.1016/S0920-5861(00)00499-5
  8. Y. G. Ko, H. S. Cho, K. H. Choi, and W. Y. Lee, The characteristics of metallocene/Ziegler-Natta hybrid catalysts supported on the recrystallized $MgCl_2$, Korean J. Chem. Eng., 16, 562-570 (1999). https://doi.org/10.1007/BF02708132
  9. H. S. Cho and W. Y. Lee, Preparation of inorganic $MgCl_2$-alcohol adduct and its application in organometallic HYBRID catalysts for ethylene polymerization, Korean J. Chem. Eng., 19, 557-563 (2002). https://doi.org/10.1007/BF02699295
  10. S. Karakalos, A. Siokou, and S. Ladas, The interfacial properties of $MgCl_2$ films grown on a flat $SiO_2$/Si substrate, An XPS ans ISS study, Appl. Surf. Sci., 225, 8941-8946 (2009).
  11. F. Garbassi and L. Pozzi, Electron beam effects on hydrated magnesium chloride revealed by XPS, J. Electron Spectrosc., 16, 199-203 (1979). https://doi.org/10.1016/0368-2048(79)85019-7
  12. H.-X. Zhang, Y.-J. Lee, J.-R. Park, D.-H. Lee, and K.-B. Yoon, Control of molecular weight distribution for polypropylene obtained by a commercial Ziegler-Natta Catalyst: Effect of a cocatalyst and hydrogen, J. Appl. Polym. Sci., 120, 101-108 (2011). https://doi.org/10.1002/app.33080