DOI QR코드

DOI QR Code

Optimization of Total Flavonoids Extraction Process from Wheat Sprout using Central Composite Design Model

중심합성계획모델을 이용한 밀싹으로부터 플라보노이드성분의 추출공정 최적화

  • Received : 2018.03.13
  • Accepted : 2018.05.01
  • Published : 2018.08.10

Abstract

Effective ingredients were extracted using wheat sprout with high levels of flavonoids, and the extraction process was optimized with a central composite design model. The response value of the central composite design model establishes the extraction yield and the content of the flavonoids. The main and interactive effects were then analyzed depending on independent variables such as the extraction time, the volume ratio of alcohol to ultrapure water, and the extraction temperature. The extraction time and temperature were relatively large for the extraction yield. For the total flavonoids, the extraction time was most significantly affected. Considering both the extraction yield and the content of the total flavonoids, optimal extraction conditions were as follows: the extraction time (2.44 h), volume ratio of alcohol to ultrapure water (50.00 vol%), extraction temperature ($54.41^{\circ}C$). Under these condition, the extraction yield was 30.14 wt% and the content of the total flavonoids was $35.37{\mu}g\;QE/mL\;dw$. From the actual experimental result, the extraction yield under this condition was 29.92 wt% and the content of the total flavonoids was $35.32{\mu}g\;QE/mL\;dw$, which had an error rate of 0.39% and 0.74%, respectively. This is a multi-analysis comprehensive analysis that analyzes two simultaneous values of responses, but is considered to be highly accurate and also provides an excellent reliability of the optimization process in this study.

플라보노이드성분 함량이 높은 밀싹을 이용하여 유효성분을 추출하고, 중심합성계획모델을 이용하여 추출공정을 최적화하였다. 중심합성계획모델의 반응치로는 추출수율과 플라보노이드성분 함량을 설정하고, 독립변수인 추출시간, 주정/초순수 부피비, 추출온도에 따른 주효과도와 교호효과도를 해석하였다. 추출수율의 경우 추출시간과 추출온도가 상대적으로 큰 영향을 미쳤으며, 플라보노이드성분 함량의 경우에는 추출시간의 영향이 가장 크게 나타났다. 추출수율과 플라보노이드성분 함량을 모두 고려한 결과 최적추출조건은 추출시간(2.44 h), 주정/초순수의 부피비(50.00 vol%), 추출온도($54.41^{\circ}C$)이었으며, 이때 추출수율은 30.14 wt%, 플라보노이드성분 함량은 $35.37{\mu}g\;QE/mL\;dw$이었다. 이 조건의 실제 실험결과 추출수율(29.92 wt%), 플라보노이드성분 함량($35.32{\mu}g\;QE/mL\;dw$)으로 오차율은 각각 0.39%, 0.74%이었다. 이는 두 개의 반응치를 동시에 분석하는 다중분석 종합분석임에도 높은 정확도를 나타낸 것으로 본 연구에서의 최적화과정 신뢰도가 우수한 것으로 사료된다.

Keywords

References

  1. A. H. Clifford and S. L. Cuppett, Anthocyanins-nature, occurrence and dietary burden, J. Sci. Food Agric., 80, 1063-1072 (2000). https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1063::AID-JSFA605>3.0.CO;2-Q
  2. N. C. Cook and S. Samman, Flavonoids-Chemistry, metabolism, cardioprotective effects, and dietary sources, J. Nutr. Biochem., 7, 66-76 (1996). https://doi.org/10.1016/0955-2863(95)00168-9
  3. F. Ferreres, D. Gomes, P. Valentano, R. Goncalves, R. Pio, E. A. Chagas, R. M. Seabra, and P. B. Andrade, Improved loquat (Eriobotrya japonica Lindl.) cultivars: Variation of phenolics and antioxidantive potential, Food Chem., 114, 1019-1027 (2009). https://doi.org/10.1016/j.foodchem.2008.10.065
  4. K. Charanjit and H. C. Kapoor, Antioxidants in fruits and vegetables, Int. J. Food Sci. Technol., 36, 703-725 (2001). https://doi.org/10.1046/j.1365-2621.2001.00513.x
  5. M. R. Park, C. Yoo, Y. N. Chang, and B. Y. Ahn, Change of total polyphenol content of fermented Gastrodia elata blume and radical scavenging, Korean J. Plant Res., 25(4), 379-386 (2012). https://doi.org/10.7732/kjpr.2012.25.4.379
  6. N. R. Im, H. S. Kim, J. H. Ha, G. Y. Noh, and S. N. Park, Antioxidant and tyrosinase inhibitory activities of dicaffeoylquinic acid derivatives isolated from Gnaphalium affine D. DON, Appl. Chem. Eng., 26(4), 470-476 (2015). https://doi.org/10.14478/ace.2015.1058
  7. S. A. Park, J. H. Ha, and S. N. Park, Antioxidative activity and component analysis of Broussonetia kazinoki SIEB extracts, Appl. Chem. Eng., 24(2), 177-183 (2013).
  8. H. S. Jeong, H. Joo, and J.-H. Lee, Antioxidant activity of dietary fibers from tubers and stalks of sweet potato and their anti-cancer effect in human colon cancer, Appl. Chem. Eng., 24(5), 525-529 (2013).
  9. A. W. Ebert, C. H. Chang, M. R. Yan, and R. Y. Yang, Nutritional composition of mungbean and soybean sprouts compared to their adult growth stage, Food Chem., 237, 15-22 (2017). https://doi.org/10.1016/j.foodchem.2017.05.073
  10. E. J. Gu, D. W. Kim, G. J. Jang, S. H. Song, and H. J. Kim, Mass-based metabolomic analysis of soybean sprouts during germination, Food Chem., 217, 311-319 (2017). https://doi.org/10.1016/j.foodchem.2016.08.113
  11. S. Yavari, A. Malakahmad, N. B. Sapari, and S. Yavari, Sorption properties optimization of agricultural wastes-derived biochars using response surface methodology, Process Saf. Environ. Prot., 109, 509-519 (2017). https://doi.org/10.1016/j.psep.2017.05.002
  12. A. A. D'Archivio and M. A. Maggi, Investigation by response surface methodology of the combined effect of pH and composition of water-methanol mixtures on the stability of curcuminoids, Food Chem., 219, 414-418 (2017). https://doi.org/10.1016/j.foodchem.2016.09.167
  13. G. I. Danmaliki, T. A. Saleh, and A. A. Shamsuddeen, Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon, J. Ind. Eng. Chem., 313, 993-1003 (2017).
  14. S. Beck and J. Stengel, Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L, Phytochemistry, 130, 201-206 (2016). https://doi.org/10.1016/j.phytochem.2016.05.005
  15. R. F. Yang, L. L. Geng, H. Q. Lu, and X. D. Fan, Ultrasound-synergized electrostatic field extraction of total flavonoids from Hemerocallis citrina baroni, Ultrason. Sonochem., 34, 571-579 (2017). https://doi.org/10.1016/j.ultsonch.2016.06.037
  16. S. B. Lee, H. S. Jang, and I. K. Hong, Optimization of extraction process for antioxidant from persimmon leaf and thistle using response surface methodology, Appl. Chem. Eng., 28(4), 442-447 (2017). https://doi.org/10.14478/ACE.2017.1037