DOI QR코드

DOI QR Code

Predicting soft tissue artefact with linear mixed models

선형혼합모형을 이용한 피부움직임 오차의 예측

  • Kim, Jinuk (Department of Physical Education, Kunsan National University)
  • Received : 2018.03.05
  • Accepted : 2018.06.07
  • Published : 2018.06.30

Abstract

This study uses mixed-effects models to predict thigh soft tissue artefact (STA), relative movement of soft tissue such as skin to femur occurring during hip joint motions. The random effects in the model were defined as STA and the fixed effects in the model were considered as skeletal motion. Five male subjects without musculoskeletal disease were selected to perform various hip joint rotational motions. Linear mixed-effects models were applied to markers' position vectors acquired from non-invasive method, photogrammetry. Predicted random effects showed similar patterns of STA among subjects. Large magnitudes of STA appeared on the points near the hip joint regardless of sides; however, small values appeared on the distal anterior.

영상에 의한 인체의 운동 분석에서 발생하는 오차 중 가장 큰 부분을 차지하는 것은 피부와 같은 연조직의 골격에 대한 상대운동이며 이를 STA라 한다. 본 연구의 목적은 고관절 운동 중 대퇴에서 발생하는 STA를 선형혼합모형을 이용하여 예측하는 것이다. 모형에 포함되어 있는 고정효과는 고관절 회전중심과 마커의 위치로 대퇴 골격에 의한 운동의 효과, 임의효과는 고관절 중심으로부터 각 마커의 편차로 STA에 의한 효과로 각각 가정하였다. 이를 위하여 근골격계 질환 경력이 없는 다섯 명의 남성 피험자를 선정하여 대퇴에 아홉 개의 마커를 부착하여 고관절의 기능적 운동을 수행하였다. 동시에 고속카메라를 이용하여 마커의 3차원 좌표를 얻었다. 이 3차원 위치벡터에 선형혼합모형을 적용하여 임의효과를 예측하였다. 분석결과 다섯 명의 피험자는 비슷한 패턴을 보였다. 고관절에 가까운 지점의 STA가 큰 것으로 나타났으며 작은 크기를 보인 부분은 원위 대퇴의 전방이다.

Keywords

References

  1. Akbarshahi, M., Schache, A. G., Fernandez, J. W., Baker, R., Banks, S., and Pandy, M. G. (2010). Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity, Journal of Biomechanics, 43, 1292-1301. https://doi.org/10.1016/j.jbiomech.2010.01.002
  2. Anderson, C. R. (2009). Determination of rigid body registration marker error from edge error, Journal of Biomechanics, 42, 949-951. https://doi.org/10.1016/j.jbiomech.2009.01.011
  3. Anderson, M. S., Damsgaard, M., Rasmussen, J., Ramey, D. K., and Benoit, D. L. (2012). A linear soft tissue artefact model for human movement analysis: Proof of concept using in vivo data, Gait & Posture, 35, 606-611. https://doi.org/10.1016/j.gaitpost.2011.11.032
  4. Camomilla, V., Cereatti, A., Cheze, L., and Cappozzo, A. (2013). A hip joint kinematics driven model for the generation of realistic thigh soft tissue artefacts, Journal of Biomechanics, 46, 625-630. https://doi.org/10.1016/j.jbiomech.2012.09.018
  5. Camomilla, V., Donati, M., Stagni, R., and Cappozzo, A. (2009). Non-invasive assessment of superficial soft tissue local displacements during movement: A feasibility study, Journal of Biomechanics, 42, 931-937. https://doi.org/10.1016/j.jbiomech.2009.01.008
  6. Cappozzo, A., Catani, F., Leardini, A., Benedetti, M. G., and Della Croce, U. (1996). Position and orientation in space of bones during movement: Experimental artefacts, Clinical Biomechanics, 11, 90-100. https://doi.org/10.1016/0268-0033(95)00046-1
  7. Cereatti, A., Bonci, T., Akbarshahi, M., et al. (2017). Standardization proposal of soft tissue artefact description for data sharing in human motion measurements, Journal of Biomechanics, 62, 5-13. https://doi.org/10.1016/j.jbiomech.2017.02.004
  8. Cereatti, A., Croce, U. D., and Cappozzo, A. (2006). Reconstruction of skeletal movement using skin markers: Comparative assessment of bone pose estimators, Journal of Neuroengineering and Rehabilitation, 3:7, 1-12. https://doi.org/10.1186/1743-0003-3-1
  9. De Rosario, H., Page, A., Besa, A., and Valera, A. (2013). Propagation of soft tissue artifacts to the center of rotation: A model for the correction of functional calibration techniques, Journal of Biomechanics, 46, 2619-2625. https://doi.org/10.1016/j.jbiomech.2013.08.006
  10. De Rosario, H., Page, A., Besa, A., Mata, V., and Conejero, E. (2012). Kinematic description of soft tissue artefacts: Quantifying rigid versus deformation components and their relation with bone motion, Medical and Biological Engineering and Computing, 50, 1173-1181. https://doi.org/10.1007/s11517-012-0978-5
  11. Diggle, P. J., Heagerty, P., Liang, K. Y., and Zeger, S. L. (2002). Analysis of Longitudinal Data (2nd ed.), Oxford University Press, New York.
  12. Fitzmaurice, G. M., Laird, N. M., and Ware, J. H. (2004). Applied Longitudinal Analysis, John Wiley & Sons, Hoboken.
  13. Galecki, A. and Burzykowski, T. (2013). Linear Mixed-Effects Models using R: A Step-by-Step Approach, Springer, New York.
  14. Gao, B. and Zheng, N. (2008). Investigation of soft tissue movement during level walking: translations and rotations of skin markers, Journal of Biomechanics, 41, 3189-3195. https://doi.org/10.1016/j.jbiomech.2008.08.028
  15. Ginsberg, J. H. (1998). Advanced Engineering Dynamics (2nd ed.), Cambridge University Press, New York.
  16. Grimpampi, E., Camomilla, V., Cereatti, A., de Leva, P., and Cappozzo, A. (2014). Metrics for describing soft tissue artefact and its effect on pose, size and shape of marker clusters, IEEE Transactions on Biomedical Engineering, 61, 1-7. https://doi.org/10.1109/TBME.2013.2294072
  17. Kim, J. (2017). A statistical model for marker position in biomechanics, Korean Journal of Sport Biomechanics, 27, 67-74. https://doi.org/10.5103/KJSB.2017.27.1.67
  18. Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data, Biometrics, 38, 963-974. https://doi.org/10.2307/2529876
  19. Leardini, A., Chiari, L., Della Croce, U. and Cappozzo, A. (2005). Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation, Gait & Posture, 21, 212-225. https://doi.org/10.1016/j.gaitpost.2004.05.002
  20. Lindstrom, M. J. and Bates, D. M. (1988). Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data, Journal of the American Statistical Association, 83, 1014-1022.
  21. McCulloch, C. E., Searle, S. R., and Neuhaus, J. M. (2008). Generalized, Linear, and Mixed Models (2nd ed.), John Wiley & Sons, Inc., Hoboken.
  22. Ojeda, J., Martinez-Reina, J., and Mayo, J. (2014). A method to evaluate human skeletal models using marker residuals and global optimization, Mechanism and Machine Theory, 73, 259-272. https://doi.org/10.1016/j.mechmachtheory.2013.11.003
  23. Peters, A., Sangeux, M., Morris, M., and Baker, R. (2009). Determination of the optimal locations of surface-mounted markers on the tibial segment, Gait & Posture, 29, 42-48. https://doi.org/10.1016/j.gaitpost.2008.06.007
  24. Peters, A., Galna, B., Sangeux, M., Morris, M., and Baker, R. (2010). Quantification of soft tissue artifact in lower limb human motion analysis: A systematic review, Gait & Posture, 31, 1-8. https://doi.org/10.1016/j.gaitpost.2009.09.004
  25. Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-plus, Springer-Verlag, New York.
  26. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., and Maintainer, R. (2017). Package 'nlme'. Linear and Nonlinear Mixed Effects Models, version, 3-1.
  27. Stagni, R., Fantozzi, S., Cappello, A., and Leardini, A. (2005). Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects, Clinical Biomechanics, 20, 320-329. https://doi.org/10.1016/j.clinbiomech.2004.11.012
  28. Tsai, T. Y., Lu, T. W., Kuo, M. Y., and Lin, C. C. (2011). Effect of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent, Journal of Biomechanics, 44, 1182-1188. https://doi.org/10.1016/j.jbiomech.2011.01.009
  29. Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data, Springer-Verlag, New York.
  30. West, B. T., Welch, K. B., and Galecki, A. T. (2007). Linear Mixed Models: A Practical Guide using Statistical Software, Chapman & Hall/CRC, Boca Raton.
  31. Wu, G., Siegler, S., Allard, P., et al. (2002). ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion-part I: ankle, hip, and spine, Journal of Biomechanics, 35, 543-548. https://doi.org/10.1016/S0021-9290(01)00222-6