DOI QR코드

DOI QR Code

평률 회귀분석을 위한 추정 방법의 비교

Comparison of estimation methods for expectile regression

  • 김종민 (한국외국어대학교 통계학과) ;
  • 강기훈 (한국외국어대학교 통계학과)
  • Kim, Jong Min (Department of Statistics, Hankuk University of Foreign Studies) ;
  • Kang, Kee-Hoon (Department of Statistics, Hankuk University of Foreign Studies)
  • 투고 : 2018.02.23
  • 심사 : 2018.04.30
  • 발행 : 2018.06.30

초록

설명변수가 주어졌을 때 반응변수의 평균적인 추세뿐만 아니라 극단적인 지역에서의 추세에 대해서 추정하고 싶거나 반응변수 분포의 일반적인 탐색을 위해서는 분위수 회귀분석과 평률 회귀분석을 사용할 수 있다. 본 논문에서는 평률 회귀모형의 추정을 위한 모수적 방법과 비모수적 방법의 성능을 비교하고자 한다. 이를 위해 각 추정 방법을 소개하고 여러 상황의 모의실험 및 실제자료에의 적용을 통해 비교 분석을 실시하였다. 모형에 따라 성능 차이가 있는데 자료의 형태가 복잡하여 변수 간의 관계를 유추하기 힘들 경우 비모수적으로 추정한 평률 회귀분석모형이 더욱 좋은 결과를 보였다. 일반적인 회귀분석의 경우와 달리 평률의 경우 후보가 되는 모수 모형을 상정하기 어렵다는 측면에서 볼 때, 비모수적 방법의 사용이 추천될 수 있다.

We can use quantile regression and expectile regression analysis to estimate trends in extreme regions as well as the average trends of response variables in given explanatory variables. In this paper, we compare the performance between the parametric and nonparametric methods for expectile regression. We introduce each estimation method and analyze through various simulations and the application to real data. The nonparametric model showed better results if the model is complex and difficult to deduce the relationship between variables. The use of nonparametric methods can be recommended in terms of the difficulty of assuming a parametric model in expectile regression.

키워드

참고문헌

  1. De Boor, C. (2001). A Practical Guide to Splines, Springer-Verlag, New York.
  2. De Rossi, G. and Harvey, A. (2009). Quantiles, expectiles and splines, Journal of Econometrics, 152, 179-185. https://doi.org/10.1016/j.jeconom.2009.01.001
  3. Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties, Statistical Science, 11, 89-121. https://doi.org/10.1214/ss/1038425655
  4. Fahrmeir, L., Kneib, T., Lang, S., and Marx, B. (2013). Regression : Models, Methods and Applications, Springer-Verlag, Berlin Heidelberg.
  5. Fenske, N., Kneib, T., and Hothorn, T. (2011). Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression, Journal of the American Statistical Association, 106, 494-510. https://doi.org/10.1198/jasa.2011.ap09272
  6. Guo, M. and Hardle, W. K. (2012). Simultaneous confidence bands for expectile functions, AStA - Advances in Statistical Analysis, 96, 517-541. https://doi.org/10.1007/s10182-011-0182-1
  7. Jiang, C., Jiang, M., Xu, Q., and Huang, X. (2017). Expectile regression neural network model with applications, Neurocomputing, 247, 73-86. https://doi.org/10.1016/j.neucom.2017.03.040
  8. Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing, Econometrica, 55, 819-847. https://doi.org/10.2307/1911031
  9. Schnabel S. K. and Eilers, P. H. C. (2009). An analysis of life expectancy and economic production using expectile frontier zones, Demographic Research, 21, 109-134. https://doi.org/10.4054/DemRes.2009.21.5
  10. Sobotka, F., Kauermann, G., Waltrup, L. S., and Kneib, T. (2013). On confidence intervals for semiparametric expectile regression, Statistics and Computing, 23, 135-148. https://doi.org/10.1007/s11222-011-9297-1
  11. Sobotka, F. and Kneib, T. (2012). Geoadditive expectile regression, Computational Statistics & Data Analysis, 56, 755-767. https://doi.org/10.1016/j.csda.2010.11.015
  12. Spiegel, E., Sobotka, F. and Kneib, T. (2017). Model selection in semiparametric expectile regression, Electronic Journal of Statistics, 11, 3008-3038. https://doi.org/10.1214/17-EJS1307
  13. Waltrup, L. S. (2014). Extensions of semiparametric expectile regression (Ph.D. thesis), Ludwig Maximilians University Munich.
  14. Yang, Y. and Zou, H. (2015). Nonparametric multiple expectile regression via ER-Boost, Journal of Statistical Computation and Simulation, 85, 1442-1458. https://doi.org/10.1080/00949655.2013.876024
  15. Yao, Q. and Tong, H. (1996). Asymmetric least squares regression estimation: a nonparametric approach, Journal of Nonparametric Statistics, 6, 273-292. https://doi.org/10.1080/10485259608832675
  16. Zhao, J. and Zhang, Y. (2018). Variable selection in expectile regression, Communications in Statistics - Theory and Methods, 47, 1731-1746. https://doi.org/10.1080/03610926.2017.1324989