참고문헌
- De Boor, C. (2001). A Practical Guide to Splines, Springer-Verlag, New York.
- De Rossi, G. and Harvey, A. (2009). Quantiles, expectiles and splines, Journal of Econometrics, 152, 179-185. https://doi.org/10.1016/j.jeconom.2009.01.001
- Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties, Statistical Science, 11, 89-121. https://doi.org/10.1214/ss/1038425655
- Fahrmeir, L., Kneib, T., Lang, S., and Marx, B. (2013). Regression : Models, Methods and Applications, Springer-Verlag, Berlin Heidelberg.
- Fenske, N., Kneib, T., and Hothorn, T. (2011). Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression, Journal of the American Statistical Association, 106, 494-510. https://doi.org/10.1198/jasa.2011.ap09272
- Guo, M. and Hardle, W. K. (2012). Simultaneous confidence bands for expectile functions, AStA - Advances in Statistical Analysis, 96, 517-541. https://doi.org/10.1007/s10182-011-0182-1
- Jiang, C., Jiang, M., Xu, Q., and Huang, X. (2017). Expectile regression neural network model with applications, Neurocomputing, 247, 73-86. https://doi.org/10.1016/j.neucom.2017.03.040
- Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing, Econometrica, 55, 819-847. https://doi.org/10.2307/1911031
- Schnabel S. K. and Eilers, P. H. C. (2009). An analysis of life expectancy and economic production using expectile frontier zones, Demographic Research, 21, 109-134. https://doi.org/10.4054/DemRes.2009.21.5
- Sobotka, F., Kauermann, G., Waltrup, L. S., and Kneib, T. (2013). On confidence intervals for semiparametric expectile regression, Statistics and Computing, 23, 135-148. https://doi.org/10.1007/s11222-011-9297-1
- Sobotka, F. and Kneib, T. (2012). Geoadditive expectile regression, Computational Statistics & Data Analysis, 56, 755-767. https://doi.org/10.1016/j.csda.2010.11.015
- Spiegel, E., Sobotka, F. and Kneib, T. (2017). Model selection in semiparametric expectile regression, Electronic Journal of Statistics, 11, 3008-3038. https://doi.org/10.1214/17-EJS1307
- Waltrup, L. S. (2014). Extensions of semiparametric expectile regression (Ph.D. thesis), Ludwig Maximilians University Munich.
- Yang, Y. and Zou, H. (2015). Nonparametric multiple expectile regression via ER-Boost, Journal of Statistical Computation and Simulation, 85, 1442-1458. https://doi.org/10.1080/00949655.2013.876024
- Yao, Q. and Tong, H. (1996). Asymmetric least squares regression estimation: a nonparametric approach, Journal of Nonparametric Statistics, 6, 273-292. https://doi.org/10.1080/10485259608832675
- Zhao, J. and Zhang, Y. (2018). Variable selection in expectile regression, Communications in Statistics - Theory and Methods, 47, 1731-1746. https://doi.org/10.1080/03610926.2017.1324989