DOI QR코드

DOI QR Code

Predicting the Potential Habitat and Risk Assessment of Amaranthus patulus using MaxEnt

Maxent를 활용한 가는털비름(Amaranthus patulus)의 잠재서식지 예측 및 위험도 평가

  • Lee, Yong Ho (Department of Plant & Environmental Science, Hankyong National University) ;
  • Na, Chea Sun (Seed Conservation Division, Baekdudaegan National Arboretum) ;
  • Hong, Sun Hea (Department of Plant & Environmental Science, Hankyong National University) ;
  • Sohn, Soo In (National Academy of Agricultural Science, RDA) ;
  • Kim, Chang Suk (National Institute of Crop Science, RDA) ;
  • Lee, In Yong (National Academy of Agricultural Science, RDA) ;
  • Oh, Young Ju (Institute for Future Environmental Ecology Co., Ltd)
  • 이용호 (국립한경대학교 식물생명환경과학과) ;
  • 나채선 (국립백두대간수목원 종자보전연구실) ;
  • 홍선희 (국립한경대학교 식물생명환경과학과) ;
  • 손수인 (농촌진흥청 국립농업과학원) ;
  • 김창석 (농촌진흥청 국립식량과학원) ;
  • 이인용 (농촌진흥청 국립농업과학원) ;
  • 오영주 ((주)미래환경생태연구소)
  • Received : 2018.12.11
  • Accepted : 2018.12.20
  • Published : 2018.12.31

Abstract

This study was conducted to predict the potential distribution and risk of invasive alien plant, Amaranthus patulus, in an agricultural area of South Korea. We collected 254 presence localities of A. patulus using field survey and literature search and stimulated the potential distribution area of A. patulus using maximum entropy modeling (MaxEnt) with six climatic variables. Two different kinds of agricultural risk index, raster risk index and regional risk index, were estimated. The 'raster risk index' was calculated by multiplying the potential distribution by the field area in $1{\times}1km$ and 'regional risk index' was calculated by multiplying the potential distribution by field area proportion in the total field of South Korea. The predicted potential distribution of A. patulus was almost matched with actual presence data. The annual mean temperature had the highest contribution for distribution modeling of A. patulus. Area under curve (AUC) value of the model was 0.711. The highest regions were Gwangju for potential distribution, Jeju for 'raster risk index' and Gyeongbuk for 'regional risk index'. This different ranks among the index showed the importance about the development of various risk index for evaluating invasive plant risk.

본 연구는 MaxEnt 모형을 활용하여 가는털비름의 잠재서식지를 예측하고, 예측된 잠재서식지와 밭면적을 활용하여 가는털비름의 잡초로서의 부정적 영향에 대한 위험도 지수를 예측하기 위하여 수행되었다. 가는털비름의 분포 예측을 위하여 MaxEnt 모형을 구축하기 위하여 남한 전국의 254지점의 분포 자료와 6개의 생물 기후 인자를 활용하였다. 밭농업에 대한 두가지 방법의 위험도 평가를 수행하였고 격자 위험도 지수(raster risk index)는 $1km^2$ 격자별로 잠재 서식지 분포 확률과 밭면적의 비율을 서로 곱하여 나타냈다. 지역 위험도 지수(regional risk index)는 잠재 서식지 분포 확률의 평균과 전체 밭 면적 중 지방자치단체의 실제 밭면적의 비율을 곱하여 산출하였다. MaxEnt모형으로 예측된 가는털비름의 잠재서식지는 실제서식지와 유사하게 나타났으며 모델의 AUC 값 또한 0.711로 좋은 설명력을 지니는 것으로 분석되었다. 잠재서식지 비율이 가장 높게 나타난 지역은 광주광역시였고 격자 위험도 지수가 가장 높게 나타난 지역은 제주도였다. 지역 위험도 지수가 가장 높게 나타난 지역은 경상북도였다. 잠재 서식지 비율과 위험도 지수의 서로 다른 순위는 외래식물의 위험성을 예측할 때 잠재 서식지 비율만을 활용하여 외래식물의 위험성을 예측하는 것보다 외래식물이 부정적 영향을 주는 대상과 결합된 위험도 지수의 필요성을 제시한다. 또한 격자 위험도 지수, 지역 위험도 지수의 서로 다른 순위는 분석의 필요성에 따라서 다양한 평가 기법이 개발될 필요성을 보여준다.

Keywords

References

  1. AAS. 2017. Agricultural area statistics. Statistics Korea. Daejeon, Korea. http://kostat.go.kr/wnsearch/search.jsp. Assessed on 25 August 2017.
  2. Austin M. 2007. Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model. 200:1-19.
  3. Beaumont LJ, RV Gallagher, MR Leishman, L Hughes and PO Downey. 2014. How can knowledge of the climate niche inform the weed risk assessment process? A case study of Chrysanthemoides monilifera in Australia. Divers. Distrib. 20:613-625. https://doi.org/10.1111/ddi.12190
  4. Boria RA, LE Olson, SM Goodman and RA Anderson. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275:73-77.
  5. Brown JL, JR Bennett and CM French. 2017. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5:e4095.
  6. CBD. 2009. Invasive Alien Species: Convention on Biological Diversity. Convention on Biological Diversity. Montreal, Canada. pp. 6-9.
  7. Choi JY, SH Lee and SH Lee. 2015. Anticipation of the future suitable cultivation areas for Korean pines in Korean Peninsula with climate change. J. Korean Env. Res. Tech. 18:103-113.
  8. Chun JH and CB Lee. 2013. Assessing the effects of climate change on the geographic distribution of Pinus densiflora in Korea using ecological niche model. Korean J. Agric. For. Meteorol. 15:219-233.
  9. Costea M and D DeMason. 2001. Stem morphology and anatomy in Amaranthus L. (Amaranthaceae) taxonomic significance. J. Torrey Bot. Soc. 128:254-281.
  10. EGIS. 2017. Envionmental Spatial Information Service. Ministry of Environment. Sejong, Korea. Available from URL: http://egis.me.go.kr/atlas/list.do. Accessed on 15 July 2017.
  11. Elith J and JR Leathwick. 2009. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40:677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  12. Fick SE and RJ Hijmans. 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37:4302-4315.
  13. Guisan A and W Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8:993-1009.
  14. KNA. 2014. Korea Biodiversity Information System. Korea National Arboretum. http://www.nature.go.kr. Assessed on 22 January 2014.
  15. Lee SH, HC Jung and JY Choi. 2012. Projecting climate change impact on the potential distribution of endemic plants (Megaleranthis saniculifolia) in Korea. J. Korean Env. Res. Tech. 15:75-83.
  16. Lee SH, JY Choi and YM Lee. 2011. Projection of climate change effects on the potential distribution of Abeliophyllum distichum in Korea. Korean J. Agri. Sci. 38:219-225.
  17. Lee SH, KH Cho and WJ Lee. 2016a. Prediction of potential distributions of two invasive alien plants, Paspalum distichum and Ambrosia artemisiifolia, using species distribution model in Korean peninsula. Ecol. Resil. Infrastruct. 3:189-200.
  18. Lee YG, JH Sung, JH Chun and MY Shin. 2014. Effect of climate changes on the distribution of productive areas for Quercus mongolica in Korea. J. Korean For. Soc. 103:605-612.
  19. Lee YH, SH Hong, CS Na, IS Sohn, MH Kim, CS Kim and YJ Oh. 2016b. Predicting the suitable habitat of Amaranthus viridis based on climate change scenarios by MaxEnt. Korean J. Environ. Biol. 34:240-245.
  20. Lee YH, YJ Oh, SH Hong, CS Na, YE Na, CS Kim and IS Sohn. 2015. Predicting the suitable habitat of invasive alien plant Conyza bonariensis based on climate change scenarios. J. Climate Change Res. 6:243-248.
  21. Padalia H, V Srivastava and S Kushwaha. 2014. Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecol. Inform. 22:36-43.
  22. Park HC, JC Lim, JH Lee and GG Lee. 2017. Predicting the potential distributions of invasive species using the landsat imagery and Maxent: focused on "Ambrosia trifida L. var. trifida" in Korean Demilitarized Zone. J. Korean Env. Res. Tech. 20:1-12.
  23. Park HC, JH Lee and GG Lee. 2014. Predicting the suitable habitat of the Pinus pumila under climate change. J. Environ. Impact Assess. 23:379-392.
  24. Park SH. 2009. New Illustration and Photographs of Naturalized Plants of Korea. Ilchokak Publishing, Seoul.
  25. Phillips SJ, RP Anderson and RE Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190:231-259.
  26. Pimentel D, L Lach, R Zuniga and D Morrison. 2000. Environmental and economic costs of nonindigenous species in the United States. BioScience 50:53-65.
  27. Pimentel D. 2002. Biological invasions: Economic and environmental costs of alien plant, animal, and microbe species. CRC press, Boca Raton, FL. p. 369.
  28. Qin Z, A DiTommaso, RS Wu and HY Huang. 2014. Potential distribution of two Ambrosia species in China under projected climate change. Weed Res. 54:520-531.
  29. Shcheglovitova M and RP Anderson. 2013. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol. Model. 269:9-17.
  30. Smolik MG, S Dullinger, F Essl, I Kleinbauer, M Leitner, J Peterseil, LM Stadler and G Vog. 2010. Integrating species distribution models and interacting particle systems to predict the spread of an invasive alien plant. J. Biogeogr. 37:411-422.
  31. Stohlgren TJ, P Ma, S Kumar, M Rocca, JT Morisette, CS Jarnevich and N Benson. 2010. Ensemble habitat mapping of invasive plant species. Risk Anal. 30:224-235.
  32. Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science 240:1285-1293.
  33. Tererai F and AR Wood. 2014. On the present and potential distribution of Ageratina adenophora (Asteraceae) in South Africa. S. Afr. J. Bot. 95:152-158.
  34. Won JG, KS Jang, JE Hwang, OH Kwon, TY Kwon and BC Moon. 2012. Yield response of red pepper by densities of D. ciliaris and A. patulus in eco-friendly cultivated field. Weed Turf. Sci. 1:38-43.
  35. Youngah L, G Munisamy, C Samuel and H Michael. 2011. Predicting potential invasive species distribution: An application to New Zealand mudsnails in the Pacific Northwest. pp. 24-26. In Proceedings of Agricultural & Applied Economic Association's 2011 AAEA & NAREA Joint Annual Meeting. Pittsburgh, Pennsylvania.
  36. Zimmermann NE, TC Edwards Jr, CH Graham, PB Pearman and JC Svenning. 2010. New trends in species distribution modelling. Ecography 33:985-989.