DOI QR코드

DOI QR Code

Forced vibration response in nanocomposite cylindrical shells - Based on strain gradient beam theory

  • Received : 2018.04.16
  • Accepted : 2018.06.03
  • Published : 2018.08.10

Abstract

In this paper, forced vibration of micro cylindrical shell reinforced by functionally graded carbon nanotubes (FG-CNTs) is presented. The structure is subjected to transverse harmonic load and modeled by beam model. The size effects are considered based on strain gradient theory containing three small scale parameters. The mixture rule is used for obtaining the effective material properties of the structure. Based on sinusoidal shear deformation theory of beam, energy method and Hamilton's principle, the motion equations are derived. Applying differential quadrature method (DQM) and Newmark method, the frequency curves of the structure are plotted. The effect of different parameters including, CNTs volume percent and distribution type, boundary conditions, size effect and length to thickness ratio on the frequency curves of the structure is studied. Numerical results indicate that the dynamic deflection of the FGX-CNT-reinforced cylindrical is lower with respect to other type of CNT distribution.

Keywords

References

  1. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016) "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  2. Akbarov, S.D. and Mehdiyev, M.A. (2017), "Forced vibration of the elastic system consisting of the hollow cylinder and surrounding elastic medium under perfect and imperfect contact", Struct. Eng. Mech., Int. J., 62(1), 113-123. https://doi.org/10.12989/sem.2017.62.1.113
  3. Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013
  4. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., Int. J., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  5. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  6. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., Int. J., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  7. Belkorissat, I., Houari, M.S.A., Tounsi, A. and Hassan, S. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  8. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  9. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., Int. J., 62(6), 695-702.
  10. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mat. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  11. Bessaim, A., Houari, M.S.A. and Tounsi, A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
  12. Besseghier, A., Houari, M.S.A., Tounsi, A. and Hassan, S. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., Int. J., 19(6), 601-614.
  13. Bouafia, Kh., Kaci, A., Houari M.S.A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  14. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  15. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016b), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., Int. J., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  16. Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., Int. J., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  17. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  18. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  19. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016a), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., Int. J., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  20. Bhushan, A., Inamdar, M.M. and Pawaskar, D.N. (2014), "Simultaneous planar free and forced vibrations analysis of an electrostatically actuated beam oscillator", Int. J. Mech. Sci., 82, 90-99. https://doi.org/10.1016/j.ijmecsci.2014.03.003
  21. Chen, L. (2015), "Forced vibration of surface foundation on multilayered half space", Struct. Eng. Mech., Int. J., 54(4), 623-648. https://doi.org/10.12989/sem.2015.54.4.623
  22. Chen, D., Yang, J. and Kitipornchai, S. (2018), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108-109, 14-22.
  23. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., Int. J., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  24. Dai, H.L., Zhao, D.M., Zou, J.J. and Wang, L. (2016), "Surface effect on the nonlinear forced vibration of cantilevered nanobeams", Physica E, 80, 25-30. https://doi.org/10.1016/j.physe.2016.01.008
  25. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., Int. J., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  26. Duc, N.D., Hadavinia, H., Van Thu, P. and Quan, T.Q. (2015), "Vibration and nonlinear dynamic response of imperfect threephase polymer nanocomposite panel resting on elastic foundations under hydrodynamic loads", Compos. Struct., 131, 229-237. https://doi.org/10.1016/j.compstruct.2015.05.009
  27. Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Van Thanh, N. (2017a), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundation", Thin-Wall. Struct., 115, 300-310. https://doi.org/10.1016/j.tws.2017.02.016
  28. Duc, N.D., Lee, J., Nguyen-Thoi, T. and Thang, P.T. (2017b), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032
  29. Duc, N.D., Tran, Q.Q. and Nguyen, D.K. (2017c), "New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and temperature", Aerosp. Sci. Technol., 71, 360-372. https://doi.org/10.1016/j.ast.2017.09.031
  30. Duc, N.D., Seung-Eock, K., Quan, T.Q., Long, D.D. and Anh, V.M. (2018), "Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell", Compos. Struct., 184, 1137-1144. https://doi.org/10.1016/j.compstruct.2017.10.064
  31. El-Haina, F., Bakora, A., Bousahla, A.A. and Hassan, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 63(5), 585-595.
  32. Ghulghazaryan, L.G. (2015), "Forced vibrations of orthotropic shells when there is viscous resistance", J. Appl. Math. Mech., 79(3), 281-292. https://doi.org/10.1016/j.jappmathmech.2015.09.008
  33. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., Int. J., 64(4), 391-402.
  34. Larbi Chaht, F., Kaci, A., Houari, M.S.A. and Hassan, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  35. Lei, J., He, Y., Zhang, B., Gan, Z. and Zeng, P. (2013), "Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory", Int. J. Eng. Sci., 72, 36-52. https://doi.org/10.1016/j.ijengsci.2013.06.012
  36. Li, C., Zhang, Y., Tu, W., Jun, C., Liang, H. and Yu, H. (2017), "Soft measurement of wood defects based on LDA feature fusion and compressed sensor images", J. Forestry Res., 28(6), 1285-1292. https://doi.org/10.1007/s11676-017-0395-6
  37. Li, Y.H., Dong, Y.H., Qin, Y. and Lv, H.W. (2018), "Nonlinear forced vibration and stability of an axially moving viscoelastic sandwich beam", Int. J. Mech. Sci., 138-139, 131-145. https://doi.org/10.1016/j.ijmecsci.2018.01.041
  38. Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014) "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Methods Appl. Mech. Eng., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001
  39. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNTreinForced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
  40. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  41. Mehri, M., Asadi, H. and Wang, Q. (2016), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Meth. Appl. Mech. Eng., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017
  42. Menasria, A., Bouhadra, A., Tounsi, A. and Hassan, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175.
  43. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A.T. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  44. Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2018), "Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations", Int. J. Non-Linear Mech., 101, 157-173. https://doi.org/10.1016/j.ijnonlinmec.2018.02.014
  45. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A. and Hassan, S. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383.
  46. Orhan, S. (2007), "Analysis of free and forced vibration of a cracked cantilever beam", NDT & E Int., 40(6), 443-450. https://doi.org/10.1016/j.ndteint.2007.01.010
  47. Repetto, C.E., Roatta, A. and Welti, R.J. (2012), "Forced vibrations of a cantilever beam", Eur. J. Phys., 33(5), 345-366. https://doi.org/10.1088/0143-0807/33/2/345
  48. Simsek, M. (2012), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76.
  49. Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
  50. Simsek, M. and Kocaturk, T. (2009), "Nonlinear dynamic analysis of an eccentrically prestressed damped beam under a concentrated moving harmonic load", J. Sound Vib., 320(1-2), 235-253. https://doi.org/10.1016/j.jsv.2008.07.012
  51. Su, G.Y., Li, Y.X., Li, X.Y. and Muller, R. (2018), "Free and forced vibrations of nanowires on elastic substrates", Int. J. Mech. Sci., 138-139, 62-73. https://doi.org/10.1016/j.ijmecsci.2018.01.039
  52. Thanh, N.V., Khoa, N.D., Tuan, N.D., Tran, P. and Duc, N.D. (2017), "Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shear deformable plates with temperature-dependent material properties", J. Therm. Stres., 40(10), 1254-1274. https://doi.org/10.1080/01495739.2017.1338928
  53. Uymaz, B. (2013), "Forced vibration analysis of functionally graded beams using nonlocal elasticity", Compos. Struct., 105, 227-239. https://doi.org/10.1016/j.compstruct.2013.05.006
  54. Van Thu, P. and Duc, N.D. (2016), "Non-linear dynamic response and vibration of an imperfect three-phase laminated nanocomposite cylindrical panel resting on elastic foundations in thermal environment", Sci. Eng. Compos. Mater., 24(6), 951-962.
  55. Virgin, L.N. and Plaut, R.H. (1993), "Effect of axial load on forced vibrations of beams", J. Sound Vib., 168(3), 395-405. https://doi.org/10.1006/jsvi.1993.1382
  56. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  57. Zidi, M., Tounsi, A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-341. https://doi.org/10.1016/j.ast.2014.02.001

Cited by

  1. On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes vol.38, pp.5, 2018, https://doi.org/10.12989/scs.2021.38.5.533
  2. Static analysis of cutout microstructures incorporating the microstructure and surface effects vol.38, pp.5, 2018, https://doi.org/10.12989/scs.2021.38.5.583