DOI QR코드

DOI QR Code

Creep analysis of the FG cylinders: Time-dependent non-axisymmetric behavior

  • Arefi, Mohammad (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Nasr, Mehrdad (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Loghman, Abbas (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • 투고 : 2018.01.04
  • 심사 : 2018.06.02
  • 발행 : 2018.08.10

초록

In this paper history of stresses, strains, radial and circumferential displacements of a functionally graded thick-walled hollow cylinder due to creep phenomenon is investigated. The cylinder is subjected to an arbitrary non-axisymmetric two dimensional thermo-mechanical loading and uniform magnetic field along axial direction. Using equilibrium, strain-displacements and stress-strain relations, the governing differential equations of the problem containing creep strains are derived in terms of radial and circumferential displacements. Since the displacements are varying with time due to creep phenomenon, an analytical solution is not available for these equations. Thus, a semi-analytical procedure based on separation of variables and Fourier series together with a numerical procedure is employed. The numerical results indicate that the non-axisymmetric loading and the material grading index have significant effect on stress redistributions. Moreover, by proper selection of material for any combination of non-axisymmetric loading, one can arrive suitable response for the cylinder to achieve optimal design. With some simplifications, the results are validated with the existing literature.

키워드

과제정보

연구 과제 주관 기관 : University of Kashan

참고문헌

  1. Arani, A.G., Barzoki, A.M., Kolahchi, R., Mozdianfard, M.R. and Loghman, A. (2011), "Semi-analytical solution of timedependent electro-thermo-mechanical creep for radially polarized piezoelectric cylinder", Comput. Struct., 89(15), 1494-502. https://doi.org/10.1016/j.compstruc.2011.05.001
  2. Arani, A.G., Haghparast, E., Maraghi, Z.K. and Amir, S. (2015), "Static stress analysis of carbon nano-tube reinforced composite (CNTRC) cylinder under non-axisymmetric thermo-mechanical loads and uniform electro-magnetic fields", Compos. Part B. Eng., 68, 136-145. https://doi.org/10.1016/j.compositesb.2014.08.036
  3. Arefi, M. (2014), "A complete set of equations for piezomagnetoelastic analysis of a functionally graded thick shell of revolution", Latin. Am. J. Solids. Struct., 11(11), 2073-2092. https://doi.org/10.1590/S1679-78252014001100009
  4. Arefi, M. (2015), "Nonlinear electromechanical analysis of a functionally graded square plate integrated with smart layers resting on Winkler-Pasternak foundation", Smart. Struct. Syst., Int. J., 16(1), 195-211. https://doi.org/10.12989/sss.2015.16.1.195
  5. Arefi, M. (2016a), "Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials", Acta Mech., 227(9), 2529-2542. https://doi.org/10.1007/s00707-016-1584-7
  6. Arefi, M. (2016b), "Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage", Appl. Math. Mech., 37(3), 289-302. https://doi.org/10.1007/s10483-016-2039-6
  7. Arefi, M. and Allam, M.N.M. (2015), "Nonlinear responses of an arbitrary FGP circular plate resting on foundation", Smart Struct. Syst., Int. J., 16(1), 81-100. https://doi.org/10.12989/sss.2015.16.1.081
  8. Arefi, M. and Nahas, I. (2014), "Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell", Compos. Struct., 118, 510-518. https://doi.org/10.1016/j.compstruct.2014.08.002
  9. Arefi, M. and Rahimi, G.H. (2011a), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays., 5(12), 1442-454.
  10. Arefi, M. and Rahimi, G.H. (2011b), "Nonlinear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., Int. J., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433
  11. Arefi, M. and Rahimi, G.H. (2012a), "The effect of nonhomogeneity and end supports on the thermo elastic behavior of a clamped-clamped FG cylinder under mechanical and thermal loads", Int. J. Pres. Ves. Pip., 96, 30-37.
  12. Arefi, M. and Rahimi, G.H. (2012b), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13.
  13. Arefi, M. and Rahimi, G.H. (2012c), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., Int. J., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
  14. Arefi, M. and Rahimi, G.H. (2012d), "Three-dimensional multifield equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5
  15. Arefi, M. and Rahimi, G.H. (2014a), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart. Struct. Syst., Int. J., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001
  16. Arefi, M. and Rahimi, G.H. (2014b), "Comprehensive piezothermo-elastic analysis of a thick hollow spherical shell", Smart. Struct. Syst., Int. J., 14(2), 225-246. https://doi.org/10.12989/sss.2014.14.2.225
  17. Arefi, M. and Zenkour, A.M. (2016a), "Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory", Mater. Res. Exp., 3(11), 115704. https://doi.org/10.1088/2053-1591/3/11/115704
  18. Arefi, M. and Zenkour, A.M. (2017b), "Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezomagnetic curved nanobeam", Acta. Mech., 228(10) 3657-3674. https://doi.org/10.1007/s00707-017-1892-6
  19. Arefi, M. and Zenkour, A.M. (2017a), "Influence of magnetoelectric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory", J. Sandw. Struct. Mater. [In Press]
  20. Arefi, M. and Zenkour, A.M. (2017b), "Nonlocal electro-thermomechanical analysis of a sandwich nanoplate containing a Kelvin-Voigt viscoelastic nanoplate and two piezoelectric layers", Acta. Mech., 228(2), 475-493. https://doi.org/10.1007/s00707-016-1716-0
  21. Arefi, M. and Zenkour, A.M. (2017c), "Thermo-electromechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory", Compos. Struct., 162, 108-122. https://doi.org/10.1016/j.compstruct.2016.11.071
  22. Arefi, M. and Zenkour, A.M. (2017d), "Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams", Appl. Phys. A., 123(3), 202.
  23. Arefi, M. and Zenkour, A.M. (2017e), "Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation", Mech. Res. Com., 79, 51-62. https://doi.org/10.1016/j.mechrescom.2017.01.004
  24. Arefi, M. and Zenkour, A.M. (2017f), "Effect of thermo-magnetoelectro-mechanical fields on the bending behaviors of a threelayered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 1099636217697497. https://doi.org/10.1177/1099636217697497
  25. Arefi, M. and Zenkour, A.M. (2017g), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930
  26. Arefi, M. and Zenkour, A.M. (2017h), "Employing sinusoidal shear deformation plate theory for transient analysis of three layers sandwich nanoplate integrated with piezo-magnetic facesheets", Smart. Mater. Struct., 25(11), 115040. https://doi.org/10.1088/0964-1726/25/11/115040
  27. Arefi, M. and Zenkour, A.M. (2017i), "Vibration and bending analysis of a sandwich microbeam with two integrated piezo-magnetic face-sheets", Compos. Struct., 159(1), 479-490. https://doi.org/10.1016/j.compstruct.2016.09.088
  28. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322.
  29. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field", Smart. Struct. Syst., Int. J., 9(5), 427-439. https://doi.org/10.12989/sss.2012.9.5.427
  30. Arefi, M., Zamani, M.H. and Kiani, M. (2017), "Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak's foundation", J. Intel. Mater. Syst. Struct., 29(5), 774-786.
  31. Boyce, W.E., DiPrima, R.C. and Haines, C.W. (1969), Elementary Differential Equations and Boundary Value Problems, Wiley, New York, USA.
  32. Brnic, J., Canadija, M., Turkalj, G., Krscanski, S., Lanc, D., Brcic, M. and Gao, Z. (2016), "Short-time creep, fatigue and mechanical properties of 42CrMo4 - Low alloy structural steel", Steel Compos. Struct., Int. J., 22(4), 875-888. https://doi.org/10.12989/scs.2016.22.4.875
  33. Fesharaki, J.J. Fesharaki, V.J., Yazdipoor, M. and Razavian, B. (2012), "Two-dimensional solution for electro-mechanical behavior of functionally graded piezoelectric hollow cylinder", Appl. Math. Model., 36(11), 5521-5533. https://doi.org/10.1016/j.apm.2012.01.019
  34. Firouz-Abadi, R.D., Hojjati, M. and Rahmanian, M. (2014), "Free vibrations of single walled carbon peapods", Physica E., 56, 410-413. https://doi.org/10.1016/j.physe.2013.10.005
  35. Gallo, P., Berto, F. and Glinka, G. (2016), "Analysis of creep stresses and strains around sharp and blunt V-notches", Theor. Appl. Fract. Mech., 85, 435-446. https://doi.org/10.1016/j.tafmec.2016.06.003
  36. Ginder, R.S., Nix, W.D. and Pharr, G.M. (2018), "A simple model for indentation creep", J. Mech. Physics of Solids., 112, 552-562. https://doi.org/10.1016/j.jmps.2018.01.001
  37. Golmakaniyoon, S. and Akhlaghi, F. (2016), "Time-dependent creep behavior of Al--SiC functionally graded beams under inplane thermal loading", Comput. Mat. Sci., 121, 182-190. https://doi.org/10.1016/j.commatsci.2016.04.038
  38. Hetnarski, R.B., Eslami, M.R. and Gladwell, G.M.L. (2009), Thermal Sresses-Avanced Theory and Applications, Springer, Dordrecht, Netherlands.
  39. Jabbari, M., Sohrabpour, S. and Eslami, M.R. (2003), "General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state loads", J. Appl. Mech., 70(1), 111-118. https://doi.org/10.1115/1.1509484
  40. Jabbari, M., Vaghari, A.R., Bahtui, A. and Eslami, M.R. (2008), "Exact solution for asymmetric transient thermal and mechanical stresses in FGM hollow cylinders with heat source", Struct. Eng. Mech., Int. J., 29(5), 551-565. https://doi.org/10.12989/sem.2008.29.5.551
  41. Jain, P.K. and Singh, S. (2009), "Analytical solution to transient asymmetric heat conduction in a multilayer annulus", J. Heat Trans., ASME, 131(1), 11304. https://doi.org/10.1115/1.2977553
  42. Lee, K.H. and Fenner, R.T. (1986), "A quadratic formulation for two-dimensional elastoplastic analysis using the boundary integral equation method", J. Strain. Analysis. Eng. Des., 21(3), 159-175. https://doi.org/10.1243/03093247V213159
  43. Li, H. and Liu, Y. (2014), "Functionally graded hollow cylinders with arbitrary varying material properties under nonaxisymmetric loads", Mech. Res. Commun., 55, 1-9. https://doi.org/10.1016/j.mechrescom.2013.10.011
  44. Loghman, A. and Wahab, M.A. (1996), "Creep damage simulation of thick-walled tubes using the ${\theta}$ projection concept", Int. J. Pres. Ves. Pip., 67(1), 105-111. https://doi.org/10.1016/0308-0161(94)00175-8
  45. Loghman, A., Arani, A.G, Amir, S. and Vajedi, A. (2010), "Magnetothermoelastic creep analysis of functionally graded cylinders", Int. J. Pres. Ves. Pip., 87(7), 389-395. https://doi.org/10.1016/j.ijpvp.2010.05.001
  46. Loghman, A., Abdollahian, M., Jazi, A.J. and Arani, A.G. (2013), "Semi-analytical solution for electromagnetothermoelastic creep response of functionally graded piezoelectric rotating disk", Int. J. Thermal. Sci., 65, 254-266. https://doi.org/10.1016/j.ijthermalsci.2012.10.011
  47. Loghman, A., Nasr, M. and Arefi, M. (2017), "Nonsymmetric thermomechanical analysis of a functionally graded cylinder subjected to mechanical, thermal, and magnetic loads", J. Therm. Stress., 40(6), 765-782. https://doi.org/10.1080/01495739.2017.1280380
  48. Loghman, A., Faegh, R.K. and Arefi, M. (2018), "Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory", Steel Compos. Struct., Int. J., 26(5), 533-547.
  49. Mangal, S.K., Kapoor, N. and Singh, T. (2013), "Steady-State Creep Analysis of Functionally Graded Rotating Cylinder", Strain., 49(6), 457-466. https://doi.org/10.1111/str.12052
  50. Mendelson, A. (1968), Plasticity Theory and Application, Macmillan, New York, NY, USA.
  51. Nejad, M.Z. and Kashkoli, M.D. (2014), "Time-dependent thermocreep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux", Int. J. Engineer Sci., 82, 222-237. https://doi.org/10.1016/j.ijengsci.2014.06.006
  52. Ootao, Y. and Ishihara, M. (2013), "Asymmetric transient thermal stress of a functionally graded hollow cylinder with piecewise power law", Struct. Eng. Mech., Int. J., 47(3), 421-442. https://doi.org/10.12989/sem.2013.47.3.421
  53. Penney, R.K. and Marriott, D.L. (1971), Design for Creep, McGraw-Hill, London, UK.
  54. Poultangari, R., Jabbari, M. and Eslami, M.R. (2008), "Functionally graded hollow spheres under non-axisymmetric thermo-mechanical loads", Int. J. Pres. Ves. Pip., 85(5), 295-305. https://doi.org/10.1016/j.ijpvp.2008.01.002
  55. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear eformation theory and energy method", Mechanika, 18(3), 292-300.
  56. Rice, R.G. and Do, D.D. (2012), Applied Mathematics and Modeling for Chemical Engineers, John Wiley & Sons, NJ, USA.
  57. Sadd, M.H. (2009), Elasticity: Theory, Applications and Numerics, Academic Press, Burlington, NJ, USA.
  58. Sahan, M.F. (2015), "Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation", Steel Compos. Struct., Int. J., 18(4), 889-907. https://doi.org/10.12989/scs.2015.18.4.889
  59. Shao, Z.S., Ang, K.K., Reddy, J.N. and Wang, T.J. (2008), "Nonaxisymmetric thermomechanical analysis of functionally graded hollow cylinders", J. Therm. Stress., 31(6), 515-536. https://doi.org/10.1080/01495730801977879
  60. Xuan, F.Z., Chen, J.J., Wang, Z. and Tu, S.T. (2009), "Time-dependent deformation and fracture of multi-material systems at high temperature", Int. J. Pres. Ves. Pip., 86(9), 604-615. https://doi.org/10.1016/j.ijpvp.2009.04.013
  61. Yang, Y.Y. (2000), "Time-dependent stress analysis in functionally graded materials", Int. J. Solids. Struct., 37(51), 7593-7608. https://doi.org/10.1016/S0020-7683(99)00310-8
  62. You, L.H., Ou, H. and Zheng, Z.Y. (2007), "Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure", Compos. Struct., 78(2), 285-291. https://doi.org/10.1016/j.compstruct.2005.10.002
  63. Zenkour, A.M. and Arefi, M. (2017), "Nonlocal transient electrothermomechanical vibration and bending analysis of a functionally graded piezoelectric single-layered nanosheet rest on visco-Pasternak foundation", J. Therm. Stress., 40(2), 167-184. https://doi.org/10.1080/01495739.2016.1229146

피인용 문헌

  1. Thermo-Elastic Creep Analysis and Life Assessment of Thick Truncated Conical Shells with Variable Thickness vol.11, pp.9, 2018, https://doi.org/10.1142/s1758825119500868