

박 상 욱 한국토코넷(주) 정보통신기술연구소 이사 fi5ve@toconet.co.kr

임성만 (주)부린 대표이사 ismlife@hotmail.com

김성준 건국대학교 사회환경플랜트공학 교수 kimsj@konkuk.ac,kr

원 영 진 ㈜헤르메시스 부설연구소 소장 icetiger@nate.com

노 재 경 충남대학교 농공학과 교수 jknoh@cnu.ac.kr

강성 대 ㈜그린시뮬레이션 대표이사 sdkang40@nate.com

이 기 하 경북대학교 건설방재공학부 교수 leegiha@knu.ac,kr

변성준 (재)국제도시물정보과학원 기술개발실 선임연구원 seongjoon.byeon@gmail.com

고 덕 구 동부엔지니어링(주) 해외사업부 부사장 dkkoh@dbeng.co.kr

1. 3세부 연구과제 소개

홍수대응골든타임확보연구단의 3세부 과제는 실 시간 홍수위치기반 HPC 홍수예보 플랫폼 개발을 목

표로 하고 있으며, 타 세부과제의 학술적 연구성과 를 실용화하는 역할을 담당하고 있다.

실용화 대상이 되는 목표 단위시스템은 행정구역 홍수위험전망 시스템, 돌발홍수예보시스템, 홍수예 보시스템, 위치기반 홍수정보제공시스템으로 구성 이 되며 연구성과의 적용은 한강홍수통제소를 대상 으로 하고 있다

3세부 참여기관들의 조직구성 및 연구내용에 있어서 각 기관간의 연관관계에 따른 최종 연구목표를 요약하여 나타내면 다음 그림 1과 같다.

연구수행 내용에 대해 연차별로 간략히 설명해보 면 우선 기술동향 및 사례조사를 통하여 시스템 구 축방향을 수립하고 목표하는 시스템에 대한 설계를 진행하여 구체적인 상세설계를 통한 시스템 개발하 고 실제 현장에 적용하여 테스트 및 개선을 통하여 실용화 가능한 시스템을 개발하는 단계를 거쳐 최종 연구목표 달성을 계획하고 있으며, 연차별 연구목표 및 내용에 대해 요약하면 다음 그림 2과 같다.

2. 주요 연구내용

가. 지역 시·공간 상세 홍수정보 관리 운영시스템 개발 (3-1 협동과제)

실시간의 상세홍수정보의 수집, 처리, 저장, 분석 시스템 설계를 위한 기본조사를 토대로 구축방향을 수립하고 각 프로세스에 대한 데이터베이스 및 설계 를 진행하고 자료관리 및 운영모듈을 개발한다. 또 한, 홍수예보시스템과 돌발홍수예보시스템 개선하 여 현장에 적용하는 것을 담당하고 있다.

나. KIMSTORM2 모형 기반 홍수예측 평가 (3-1-a 위탁과제)

오픈모형인 KIMSTORM2 모형의 추가적인 알고 리즘을 정립하고 댐-보 연계 적용성을 비교·분석 하여 현장에 시험적용하여 활용가능성을 평가한다.

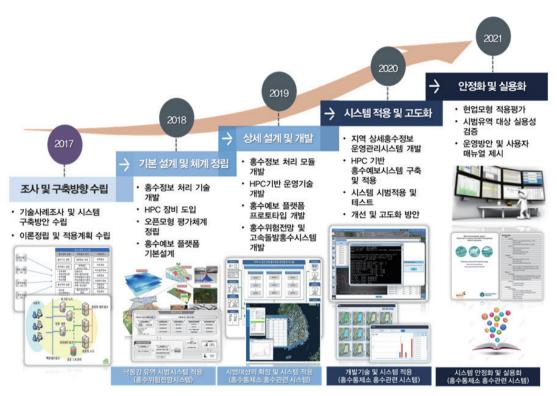


그림 2, 11, 3세부 연구내용 및 최종 연구목표

다. One모형 기반 홍수예측 평가 (3-1-b 위탁과제)

오픈모형인 One 모형의 홍수예측결과를 검증하고 분포형 모형으로의 확장성을 고려하여 기존 홍수예보시스템과의 호화 및 연계 방안을 수립하다

라. 오픈모형기반 홍수예측 평가체계 구축 (3-2 공동과제)

다양한 종류의 오픈모형에 대한 성능을 비교·분석하여 평가체계를 구축하고 기존 홍수예보시스템 과의 호환 및 연계를 위한 개선방안 수립, 능동형 홍수예보시스템 구축을 위한 오픈플랫폼 형태의 시스템 표준화 방안을 마련한다.

마. HPC 연계 홍수예보시스템 구축과 운영 기술 개발 (3-3 공동과제)

HPC 기반 시스템의 적용사례와 기술동향을 조사

하고 시스템 구축 방안을 수립하여 본 과제 목표시 스템에 HPC 기술을 적용 및 구축하고, HPC 기술을 적용한 홍수예보시스템 운영기술 개발 및 활용방안 을 제시한다.

바. 홍수위치기반(FLBS) 홍수예보 플랫폼 개발 (3-4 공동과제)

홍수위치기반 홍수예보 플랫폼 구축을 위한 기초 조사 및 구축방안을 마련하고 설계를 통한 프로토타 입을 개발하여 지속적인 개선을 통한 최종 홍수예보 플랫폼을 고도화하여 활용체계를 구축한다.

사. 행정구역 홍수위험전망시스템 및 강우레이 더 기반 고속돌발홍수 시스템 개발 (3-5 공 동과제)

행정구역단위의 홍수위험전망시스템 구축을 위한

강우레이더 데이터 검토하여 적용성을 검토하고 홍수위험전망시스템 프로토타입 시스템을 개발하여 지속적인 연구성과의 적용을 통한 최종 목표시스템을 개발한다. 또한, 1B과제의 성과의 실용화 시스템인 고속돌발홍수예보시스템을 개발한다.

아. 레이더 관측자료 기반의 초단기 앙상블 강우 예측 시스템 개발 (3-6 공동과제)

시범지역에 대한 수문 레이더 3D 관측자료를 활용한 자료동화기법 개발하고 초단기 강우예측모델 개발 및 검증하여 실시간 운영 체계를 구축한다.

자. 레이더를 이용한 도심하천 홍수예측 및 대응 방안 연구 (3-7 공동과제)

레이더 강우기반의 도시홍수예측기술을 개발하고 도시홍수예측기술을 도시침수 현장에 적용하여 취 약성 평가 방안을 제시하여 레이더 기반 도시침수지 역 취약성 평가체계를 구축한다. 도시침수 위험지구 의 대피기준 산정을 통한 주민대피 산출기법개발과 골든타임 및 선행예보시간 산정기법을 개발한다

3. 최종 연구성과 및 활용계획

최종 연구성과는 국토교통부 한강홍수통제소에 적용될 예정이며 신규로 구축되는 시스템은 행정구역 홍수위험전망시스템과 위치기반 홍수정보제공시스템(모바일 포함)이며, 기존시스템 개선은 돌발홍수예보시스템과 홍수예보시스템이 그 대상이 된다.

홍수예보의 지역적 범위의 확장과 상세한 홍수정 보를 제공하고 HPC 기반 고성능 기술을 적용하여 고용량 상세한 홍수예측정보를 처리하여 골든타임 을 확보하고 실무자 및 대국민서비스 개선 및 강화 하여 활용성을 제고할 수 있도록 한다.

4. 맺음말

최근 우리나라의 홍수피해는 대하천이 아닌 중소 하천이나 도시지역의 침수피해로 이어지는 경우가

골든타임 확보를 위한 홍수정보기술 기반 구축 및 활용체계 고도화

홍수예보지역적 범위의 확장

하천위주예보체계-> 행정구역단위예보체계전환
- 현행43개지점에서시군(구)상세공간홍수예보가능
- 위치기반의행정구역단위홍수예보체계로의확장

HPC 기반 고성능 기술을 이용한 골든타임 확보

고용량및고정확도를위한고성능 HPC기술적용
- 행정구역단위의고용량홍수예측자료의처리
- 현행3시간선행시간의6시간으로확대

실무자 서비스 개선 및 대국민 서비스 강화

실무자서비스개선 및 대국민서비스 강화 - 기존 실무자 서비스개선(기존시스템개선) - 지방자치단체 및 대국민서비스 강화

그림 3. 최종 성과물

대부분이며, 원인은 국지적인 집중호우와 지속강우 에 의해 발생하고 피해전조에서 발생까지의 시간이 점점 짧아지고 있어 골든타임 확보가 요구되고 있 다. 기존의 대하천 위주의 홍수예보체계로는 최근 홍수특성을 사전에 감지하고 대응하기에는 관련 정 보와 체계가 마련되어 있지 않다. 따라서 시군구, 동 네 등의 작은 단위의 상세한 홍수정보의 생산하고 신속하게 제공할 수 있는 체계의 구축이 필요하다.

3세부 과제는 최근의 홍수피해특성을 고려하여 현 홍수예보체계를 개선하고 고도화하여 보다 정확 하고 신속한 홍수정보제공이 가능할 수 있는 체계를

구축하는 것으로 단순 연구성과에 그치는 것이 아닌 실제 현장에 적용하여 실용화 하는 것을 최종성과로 연구가 진행될 것이다.

감사의 글

본 연구는 국토교통부/국토교통과학기 술진흥원의 지원으로 수행되었음(과제번호 18AWMP-B127555-02).