DOI QR코드

DOI QR Code

Regulation of lubricin for functional cartilage tissue regeneration: a review

  • Lee, Yunsup (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Choi, Jaehoon (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Hwang, Nathaniel S. (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
  • Received : 2017.11.26
  • Accepted : 2018.03.05
  • Published : 2018.06.01

Abstract

Background: Lubricin is chondrocyte-secreted glycoprotein that primarily conducts boundary lubrication between joint surfaces. Besides its cytoprotective function and extracellular matrix (ECM) attachment, lubricin is recommended as a novel biotherapeutic protein that restore functional articular cartilage. Likewise, malfunction of lubrication in damaged articular cartilage caused by complex and multifaceted matter is a major concern in the field of cartilage tissue engineering. Main body: Although a noticeable progress has been made toward cartilage tissue regeneration through numerous approaches such as autologous chondrocyte implantation, osteochondral grafts, and microfracture technique, the functionality of engineered cartilage is a challenge for complete reconstruction of cartilage. Thus, delicate modulation of lubricin along with cell/scaffold application will expand the research on cartilage tissue engineering. Conclusion: In this review, we will discuss the empirical analysis of lubricin from fundamental interpretation to the practical design of gene expression regulation.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials. 2011;32(34):8771-82. https://doi.org/10.1016/j.biomaterials.2011.08.073
  2. Ciullini Mannurita S, Vignoli M, Bianchi L, Kondi A, Gerloni V, Breda L, Ten Cate R, Alessio M, Ravelli A, Falcini F, et al. CACP syndrome: identification of five novel mutations and of the first case of UPD in the largest European cohort. Eur J Hum Genet. 2014;22(2):197-201. https://doi.org/10.1038/ejhg.2013.123
  3. Galle J, Bader A, Hepp P, Grill W, Fuchs B, Kas JA, Krinner A, MarquaB B, Muller K, Schiller J, et al. Mesenchymal Stem Cells in Cartilage Repair: State of the Art and Methods to monitor Cell Growth, Differentiation and Cartilage Regeneration. Curr Med Chem. 2010;17(21):2274-91. https://doi.org/10.2174/092986710791331095
  4. Bedi A, Feeley BT, Williams RJ 3rd. Management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;92(4):994-1009. https://doi.org/10.2106/JBJS.I.00895
  5. Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008; 60(2):243-62. https://doi.org/10.1016/j.addr.2007.08.027
  6. Bobick BE, Chen FH, Le AM, Tuan RS. Regulation of the chondrogenic phenotype in culture. Birth Defects Res C Embryo Today. 2009;87(4):351-71. https://doi.org/10.1002/bdrc.20167
  7. Becerra J, Andrades JA, Guerado E, Zamora-Navas P, Lopez-Puertas JM, Reddi AH. Articular cartilage: structure and regeneration. Tissue Eng Part B Rev. 2010;16(6):617-27. https://doi.org/10.1089/ten.teb.2010.0191
  8. Schinagl RM, Ting MK, Price JH, Sah RL. Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression. Ann Biomed Eng. 1996;24(4):500-12. https://doi.org/10.1007/BF02648112
  9. Wang CCB, Hung CT, Mow VC. An analysis of the effects of depthdependent aggregate modulus on articular cartilage stress-relaxation behavior in compression. J Biomech. 2001;34(1):75-84. https://doi.org/10.1016/S0021-9290(00)00137-8
  10. Elder BD, Athanasiou KA. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng Part B Rev. 2009;15(1):43-53. https://doi.org/10.1089/ten.teb.2008.0435
  11. Soltz MA, Ateshian GA. Interstitial Fluid Pressurization During Confined Compression Cyclical Loading of Articular Cartilage. Ann Biomed Eng. 2000; 28(2):150-9. https://doi.org/10.1114/1.239
  12. Krishnan R, Park S, Eckstein F, Ateshian GA. Inhomogeneous Cartilage Properties Enhance Superficial Interstitial Fluid Support and Frictional Properties, But Do Not Provide a Homogeneous State of Stress. J Biomech Eng. 2003;125(5):569. https://doi.org/10.1115/1.1610018
  13. Krishnan R, Kopacz M, Ateshian GA. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J Orthop Res. 2004; 22(3):565-70. https://doi.org/10.1016/j.orthres.2003.07.002
  14. Flannery CR, Hughes CE, Schumacher BL, Tudor D, Aydelotte MB, Kuettner KE, Caterson B. Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and Is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism. Biochem Biophys Res Commun. 1999;254(3):535-41. https://doi.org/10.1006/bbrc.1998.0104
  15. Ikegawa S, Sano M, Koshizuka Y, Nakamura Y. Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes. Cytogenetic and Genome Research. 2000;90(3-4):291-7. https://doi.org/10.1159/000056791
  16. Jay GD, Tantravahi U, Britt DE, Barrach HJ, Cha CJ. Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localized to chromosome 1q25. J Orthop Res. 2001;19(4):677-87. https://doi.org/10.1016/S0736-0266(00)00040-1
  17. Marcelino J, Carpten JD, Suwairi WM, Gutierrez OM, Schwartz S, Robbins C, Sood R, Makalowska I, Baxevanis A, Johnstone B, et al. CACP, encoding a secreted proteoglycan, is mutated in camptodactyly-arthropathy-coxa varapericarditis syndrome. Nat Genet. 1999;23(3):319-22. https://doi.org/10.1038/15496
  18. Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, Jay GD, Stewart M, Wang H, Warman ML, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Investig. 2005; 115(3):622-31. https://doi.org/10.1172/JCI200522263
  19. Swann DA, Slayter HS, Silver FH. The molecular structure of lubricating glycoprotein-I, the boundary lubricant for articular cartilage. J Biol Chem. 1981;256(11):5921-5.
  20. Radin EL, Swann DA, Weisser PA. Separation of a Hyaluronate-free Lubricating Fraction from Synovial Fluid. Nature. 1970;228(5269):377-8. https://doi.org/10.1038/228377a0
  21. Zappone B, Ruths M, Greene GW, Jay GD, Israelachvili JN. Adsorption, lubrication, and wear of lubricin on model surfaces: polymer brush-like behavior of a glycoprotein. Biophys J. 2007;92(5):1693-708. https://doi.org/10.1529/biophysj.106.088799
  22. Jay GD, Britt DE, Cha CJ. Lubricin is a product of megakaryocyte stimulating factor gene expression by human synovial fibroblasts. J Rheumatol. 2000; 27(3):594-600.
  23. Jay GD, Harris DA, Cha CJ. Boundary lubrication by lubricin is mediated by O-linked beta (1-3) Gal-GalNAc oligosaccharides. Glycoconj J. 2001;18(10):807-15. https://doi.org/10.1023/A:1021159619373
  24. Jay GD. Characterization of a bovine synovial fluid lubricating factor. I. Chemical, surface activity and lubricating properties. Connect Tissue Res. 1992;28(1-2):71-88. https://doi.org/10.3109/03008209209014228
  25. Schaefer DB, Wendt D, Moretti M, Jakob M, Jay GD, Heberer M, Martin I. Lubricin reduces cartilage-cartilage integration. Biorheology. 2004;41(3-4): 503-8.
  26. Klein J. Molecular mechanisms of synovial joint lubrication. Proceedings of the Institution of Mechanical Engineers, Part J Journal of Engineering Tribology. 2006;220(8):691-710. https://doi.org/10.1243/13506501JET143
  27. Chang DP, Abu-Lail NI, Guilak F, Jay GD, Zauscher S. Conformational mechanics, adsorption, and normal force interactions of lubricin and hyaluronic acid on model surfaces. Langmuir. 2008;24(4):1183-93. https://doi.org/10.1021/la702366t
  28. Van Klinken BJ, Dekker J, Buller HA, Einerhand AW. Mucin gene structure and expression: protection vs. adhesion. Am J Physiol Gastrointest Liver Physiol. 1995;269(5):G613-27. https://doi.org/10.1152/ajpgi.1995.269.5.G613
  29. Simmons PJ, Levesque J-P, Haylock DN. Mucin-like Molecules as Modulators of the Survival and Proliferation of Primitive Hematopoietic Cells. Ann N Y Acad Sci. 2006;938(1):196-207. https://doi.org/10.1111/j.1749-6632.2001.tb03590.x
  30. Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S, Kucherlapati R, Lipkin M, Yang K, Augenlicht L. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science. 2002;295(5560):1726-9. https://doi.org/10.1126/science.1069094
  31. Deng G, Curriden SA, Hu G, Czekay RP, Loskutoff DJ. Plasminogen activator inhibitor-1 regulates cell adhesion by binding to the somatomedin B domain of vitronectin. J Cell Physiol. 2001;189(1):23-33. https://doi.org/10.1002/jcp.1133
  32. Schvartz I, Seger D, Shaltiel S. Vitronectin. Int J Biochem Cell Biol. 1999;31(5):539-44. https://doi.org/10.1016/S1357-2725(99)00005-9
  33. Seiffert D. The Cell Adhesion Domain in Plasma Vitronectin Is Cryptic. J Biol Chem. 1997;272(21):13705-10. https://doi.org/10.1074/jbc.272.21.13705
  34. Waller KA, Zhang LX, Elsaid KA, Fleming BC, Warman ML, Jay GD. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc Natl Acad Sci U S A. 2013;110(15):5852-7. https://doi.org/10.1073/pnas.1219289110
  35. Chang DP, Abu-Lail NI, Coles JM, Guilak F, Jay GD, Zauscher S. Friction Force Microscopy of Lubricin and Hyaluronic Acid between Hydrophobic and Hydrophilic Surfaces. Soft Matter. 2009;5(18):3438-45. https://doi.org/10.1039/b907155e
  36. Jay GD, Torres JR, Warman ML, Laderer MC, Breuer KS. The role of lubricin in the mechanical behavior of synovial fluid. Proc Natl Acad Sci U S A. 2007; 104(15):6194-9. https://doi.org/10.1073/pnas.0608558104
  37. Young AA, McLennan S, Smith MM, Smith SM, Cake MA, Read RA, Melrose J, Sonnabend DH, Flannery CR, Little CB. Proteoglycan 4 downregulation in a sheep meniscectomy model of early osteoarthritis. Arthritis Res Ther. 2006;8(2):R41. https://doi.org/10.1186/ar1898
  38. Englert C, McGowan KB, Klein TJ, Giurea A, Schumacher BL, Sah RL. Inhibition of integrative cartilage repair by proteoglycan 4 in synovial fluid. Arthritis Rheum. 2005;52(4):1091-9. https://doi.org/10.1002/art.20986
  39. Zappone B, Greene GW, Oroudjev E, Jay GD, Israelachvili JN. Molecular aspects of boundary lubrication by human lubricin: effect of disulfide bonds and enzymatic digestion. Langmuir. 2008;24(4):1495-508. https://doi.org/10.1021/la702383n
  40. Bansil R, Stanley E, LaMont JT. Mucin biophysics. Annu Rev Physiol. 1995;57: 635-57. https://doi.org/10.1146/annurev.ph.57.030195.003223
  41. Raviv U, Giasson S, Kampf N, Gohy JF, Jerome R, Klein J. Lubrication by charged polymers. Nature. 2003;425(6954):163-5. https://doi.org/10.1038/nature01970
  42. Banquy X, Burdynska J, Lee DW, Matyjaszewski K, Israelachvili J. Bioinspired bottle-brush polymer exhibits low friction and Amontons-like behavior. J Am Chem Soc. 2014;136(17):6199-202. https://doi.org/10.1021/ja501770y
  43. Dedinaite A. Biomimetic lubrication. Soft Matter. 2012;8(2):273-84. https://doi.org/10.1039/C1SM06335A
  44. Yang J, Chen H, Xiao S, Shen M, Chen F, Fan P, Zhong M, Zheng J. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties. Langmuir. 2015;
  45. Liu X, Dedinaite A, Rutland M, Thormann E, Visnevskij C, Makuska R, Claesson PM. Electrostatically anchored branched brush layers. Langmuir. 2012;28(44):15537-47. https://doi.org/10.1021/la3028989
  46. Seekell RP 3rd, Dever R, Zhu Y. Control hydrogel-hyaluronic acid aggregation toward the design of biomimetic superlubricants. Biomacromolecules. 2014;15(7):2760-8. https://doi.org/10.1021/bm500620e
  47. Seror J, Merkher Y, Kampf N, Collinson L, Day AJ, Maroudas A, Klein J. Articular cartilage proteoglycans as boundary lubricants: structure and frictional interaction of surface-attached hyaluronan and hyaluronan-aggrecan complexes. Biomacromolecules. 2011;12(10):3432-43. https://doi.org/10.1021/bm2004912
  48. Das S, Banquy X, Zappone B, Greene GW, Jay GD, Israelachvili JN. Synergistic interactions between grafted hyaluronic acid and lubricin provide enhanced wear protection and lubrication. Biomacromolecules. 2013;14(5):1669-77. https://doi.org/10.1021/bm400327a
  49. Wang M, Liu C, Thormann E, Dedinaite A. Hyaluronan and phospholipid association in biolubrication. Biomacromolecules. 2013;14(12):4198-206. https://doi.org/10.1021/bm400947v
  50. Yu J, Banquy X, Greene GW, Lowrey DD, Israelachvili JN. The boundary lubrication of chemically grafted and cross-linked hyaluronic acid in phosphate buffered saline and lipid solutions measured by the surface forces apparatus. Langmuir. 2012;28(4):2244-50. https://doi.org/10.1021/la203851w
  51. Raviv U, Giasson S, Kampf N, Gohy JF, Jerome R, Klein J. Normal and frictional forces between surfaces bearing polyelectrolyte brushes. Langmuir. 2008;24(16):8678-87. https://doi.org/10.1021/la7039724
  52. Zhulina EB, Rubinstein M. Lubrication by Polyelectrolyte Brushes. Macromolecules. 2014;47(16):5825-38. https://doi.org/10.1021/ma500772a
  53. Chen M, Briscoe WH, Armes SP, Klein J. Lubrication at physiological pressures by polyzwitterionic brushes. Science. 2009;323(5922):1698-701. https://doi.org/10.1126/science.1169399
  54. Gourdon D, Lin Q, Oroudjev E, Hansma H, Golan Y, Arad S, Israelachvili J. Adhesion and stable low friction provided by a subnanometer-thick monolayer of a natural polysaccharide. Langmuir. 2008;24(4):1534-40. https://doi.org/10.1021/la702259c
  55. Lee S, Spencer ND. Materials science. Sweet, hairy, soft, and slippery. Science. 2008;319(5863):575-6. https://doi.org/10.1126/science.1153273
  56. Liu G, Liu Z, Li N, Wang X, Zhou F, Liu W. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment. ACS Appl Mater Interfaces. 2014; 6(22):20452-63. https://doi.org/10.1021/am506026e
  57. Liu G, Cai M, Zhou F, Liu W. Charged polymer brushes-grafted hollow silica nanoparticles as a novel promising material for simultaneous joint lubrication and treatment. J Phys Chem B. 2014;118(18):4920-31. https://doi.org/10.1021/jp500074g
  58. Tairy O, Kampf N, Driver MJ, Armes SP, Klein J. Dense, Highly Hydrated Polymer Brushes via Modified Atom-Transfer-Radical-Polymerization: Structure, Surface Interactions, and Frictional Dissipation. Macromolecules. 2015;48(1):140-51. https://doi.org/10.1021/ma5019439
  59. Lawrence A, Xu X, Bible MD, Calve S, Neu CP, Panitch A. Synthesis and characterization of a lubricin mimic (mLub) to reduce friction and adhesion on the articular cartilage surface. Biomaterials. 2015;73:42-50. https://doi.org/10.1016/j.biomaterials.2015.09.012
  60. Musumeci G, Loreto C, Carnazza ML, Coppolino F, Cardile V, Leonardi R. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold. Eur J Histochem. 2011;55(3):e31. https://doi.org/10.4081/ejh.2011.e31
  61. Andresen Eguiluz RC, Cook SG, Brown CN, Wu F, Pacifici NJ, Bonassar LJ, Gourdon D. Fibronectin mediates enhanced wear protection of lubricin during shear. Biomacromolecules. 2015;
  62. Yu Y, Brouillette MJ, Seol D, Zheng H, Buckwalter JA, Martin JA. Use of recombinant human stromal cell-derived factor 1alpha-loaded fibrin/hyaluronic acid hydrogel networks to achieve functional repair of fullthickness bovine articular cartilage via homing of chondrogenic progenitor cells. Arthritis Rheumatol. 2015;67(5):1274-85. https://doi.org/10.1002/art.39049
  63. Singh A, Corvelli M, Unterman SA, Wepasnick KA, McDonnell P, Elisseeff JH. Enhanced lubrication on tissue and biomaterial surfaces through peptidemediated binding of hyaluronic acid. Nat Mater. 2014;13(10):988-95. https://doi.org/10.1038/nmat4048
  64. Chen T, Hilton MJ, Brown EB, Zuscik MJ, Awad HA. Engineering superficial zone features in tissue engineered cartilage. Biotechnol Bioeng. 2013;110(5): 1476-86. https://doi.org/10.1002/bit.24799
  65. Kamiya T, Tanimoto K, Tanne Y, Lin YY, Kunimatsu R, Yoshioka M, Tanaka N, Tanaka E, Tanne K. Effects of mechanical stimuli on the synthesis of superficial zone protein in chondrocytes. J Biomed Mater Res A. 2010;92(2):801-5.
  66. Ogawa H, Kozhemyakina E, Hung HH, Grodzinsky AJ, Lassar AB. Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREBdependent, fluid flow shear stress-induced signaling pathways. Genes Dev. 2014;28(2):127-39. https://doi.org/10.1101/gad.231969.113
  67. Grad S, Lee CR, Gorna K, Gogolewski S, Wimmer MA, Alini M. Surface motion upregulates superficial zone protein and hyaluronan production in chondrocyteseeded three-dimensional scaffolds. Tissue Eng. 2005;11(1-2):249-56. https://doi.org/10.1089/ten.2005.11.249
  68. Grad S, Gogolewski S, Alini M, Wimmer MA. Effects of simple and complex motion patterns on gene expression of chondrocytes seeded in 3D scaffolds. Tissue Eng. 2006;12(11):3171-9. https://doi.org/10.1089/ten.2006.12.3171
  69. Wang N, Grad S, Stoddart MJ, Niemeyer P, Sudkamp NP, Pestka J, Alini M, Chen J, Salzmann GM. Bioreactor-Induced Chondrocyte Maturation Is Dependent on Cell Passage and Onset of Loading. Cartilage. 2013;4(2):165-76. https://doi.org/10.1177/1947603512471345
  70. Hilz FM, Ahrens P, Grad S, Stoddart MJ, Dahmani C, Wilken FL, Sauerschnig M, Niemeyer P, Zwingmann J, Burgkart R, et al. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering. Bioelectromagnetics. 2014;35(2):116-28. https://doi.org/10.1002/bem.21822
  71. Zhang L, Spector M. Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering. Biomed Mater. 2009;4(4):045012. https://doi.org/10.1088/1748-6041/4/4/045012
  72. Lohan A, Marzahn U, El Sayed K, Haisch A, Muller RD, Kohl B, Stolzel K, Ertel W, John T, Schulze-Tanzil G. Osteochondral articular defect repair using auricle-derived autologous chondrocytes in a rabbit model. Ann Anat. 2014;196(5):317-26. https://doi.org/10.1016/j.aanat.2014.03.002
  73. Klein TJ, Schumacher BL, Blewis ME, Schmidt TA, Voegtline MS, Thonar EJ, Masuda K, Sah RL. Tailoring secretion of proteoglycan 4 (PRG4) in tissue-engineered cartilage. Tissue Eng. 2006;12(6):1429-39. https://doi.org/10.1089/ten.2006.12.1429
  74. Coates EE, Riggin CN, Fisher JP. Matrix molecule influence on chondrocyte phenotype and proteoglycan 4 expression by alginate-embedded zonal chondrocytes and mesenchymal stem cells. J Orthop Res. 2012;30(12):1886-97. https://doi.org/10.1002/jor.22166
  75. Grogan SP, Chen X, Sovani S, Taniguchi N, Colwell CW Jr, Lotz MK, D'Lima DD. Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation. Tissue Eng Part A. 2014;20(1-2):264-74. https://doi.org/10.1089/ten.tea.2012.0618
  76. Steele JA, McCullen SD, Callanan A, Autefage H, Accardi MA, Dini D, Stevens MM. Combinatorial scaffold morphologies for zonal articular cartilage engineering. Acta Biomater. 2014;10(5):2065-75. https://doi.org/10.1016/j.actbio.2013.12.030
  77. Wei Q, Pei X, Hao J, Cai M, Zhou F, Liu W. Surface Modification of Diamond-Like Carbon Film with Polymer Brushes Using a Bio-Inspired Catechol Anchor for Excellent Biological Lubrication. Adv Mater Interfaces. 2014;1(5):n/a.
  78. Schmidt TA, Gastelum NS, Han EH, Nugent-Derfus GE, Schumacher BL, Sah RL. Differential regulation of proteoglycan 4 metabolism in cartilage by IL-1alpha, IGF-I, and TGF-beta1. Osteoarthr Cartil. 2008;16(1):90-7. https://doi.org/10.1016/j.joca.2007.05.009
  79. Cheng J, Wang Y, Wang Z, Yang M, Wu Y. Differential Regulation of Proteoglycan-4 Expression by IL-$1{\alpha}$ and TGF-${\beta}1$ in Rat Condylar Chondrocytes. Tohoku J Exp Med. 2010;222(3):211-8. https://doi.org/10.1620/tjem.222.211
  80. Lee SY, Niikura T, Reddi AH. Superficial zone protein (lubricin) in the different tissue compartments of the knee joint: modulation by transforming growth factor beta 1 and interleukin-1 beta. Tissue Eng Part A. 2008;14(11):1799-808. https://doi.org/10.1089/ten.tea.2007.0367
  81. McNary SM, Athanasiou KA, Reddi AH. Transforming growth factor beta-induced superficial zone protein accumulation in the surface zone of articular cartilage is dependent on the cytoskeleton. Tissue Eng Part A. 2014;20(5-6):921-9. https://doi.org/10.1089/ten.tea.2013.0043
  82. Niikura T, Reddi AH. Differential regulation of lubricin/superficial zone protein by transforming growth factor beta/bone morphogenetic protein superfamily members in articular chondrocytes and synoviocytes. Arthritis Rheum. 2007;56(7):2312-21. https://doi.org/10.1002/art.22659
  83. Khalafi A, Schmid TM, Neu C, Reddi AH. Increased accumulation of superficial zone protein (SZP) in articular cartilage in response to bone morphogenetic protein-7 and growth factors. J Orthop Res. 2007;25(3):293-303. https://doi.org/10.1002/jor.20329
  84. Liu C, Ma X, Li T, Zhang Q. Kartogenin, transforming growth factor-beta1 and bone morphogenetic protein-7 coordinately enhance lubricin accumulation in bone-derived mesenchymal stem cells. Cell Biol Int. 2015; 39(9):1026-35. https://doi.org/10.1002/cbin.10476
  85. Musumeci G, Mobasheri A, Trovato FM, Szychlinska MA, Graziano AC, Lo Furno D, Avola R, Mangano S, Giuffrida R, Cardile V. Biosynthesis of collagen I, II, RUNX2 and lubricin at different time points of chondrogenic differentiation in a 3D in vitro model of human mesenchymal stem cells derived from adipose tissue. Acta Histochem. 2014;116(8):1407-17. https://doi.org/10.1016/j.acthis.2014.09.008
  86. Nakagawa Y, Muneta T, Otabe K, Ozeki N, Mizuno M, Udo M, Saito R, Yanagisawa K, Ichinose S, Koga H, et al. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo. PLoS One. 2016;11(2):e0148777. https://doi.org/10.1371/journal.pone.0148777
  87. Cuellar A, Reddi AH. Stimulation of Superficial Zone Protein/Lubricin/PRG4 by Transforming Growth Factor-beta in Superficial Zone Articular Chondrocytes and Modulation by Glycosaminoglycans. Tissue Eng Part A. 2015;21(13-14):1973-81. https://doi.org/10.1089/ten.tea.2014.0381
  88. Jones AR, Flannery CR. Bioregulation of lubricin expression by growth factors and cytokines. Eur Cell Mater. 2007;13:40-5. discussion 45 https://doi.org/10.22203/eCM.v013a04
  89. Sakata R, McNary SM, Miyatake K, Lee CA, Van den Bogaerde JM, Marder RA, Reddi AH. Stimulation of the superficial zone protein and lubrication in the articular cartilage by human platelet-rich plasma. Am J Sports Med. 2015; 43(6):1467-73. https://doi.org/10.1177/0363546515575023

Cited by

  1. Repair of Damaged Articular Cartilage: Current Approaches and Future Directions vol.19, pp.8, 2018, https://doi.org/10.3390/ijms19082366
  2. Proteoglycan 4: From Mere Lubricant to Regulator of Tissue Homeostasis and Inflammation vol.41, pp.1, 2018, https://doi.org/10.1002/bies.201800166
  3. A Retrospective Analysis of the Cartilage Kunitz Protease Inhibitory Proteins Identifies These as Members of the Inter-α-Trypsin Inhibitor Superfamily with Potential Roles in the Protection of t vol.20, pp.3, 2018, https://doi.org/10.3390/ijms20030497
  4. Engineering of Molecular Geometry in Bottlebrush Polymers vol.52, pp.13, 2018, https://doi.org/10.1021/acs.macromol.9b00845
  5. Mechanisms of synovial joint and articular cartilage development vol.76, pp.20, 2018, https://doi.org/10.1007/s00018-019-03191-5
  6. Synthetic periprosthetic synovial fluid development for in vitro cell‐tribocorrosion testing using the Taguchi array approach vol.109, pp.4, 2018, https://doi.org/10.1002/jbm.a.37039
  7. Injectable Fibrin/Polyethylene Oxide Semi-IPN Hydrogel for a Segmental Meniscal Defect Regeneration vol.49, pp.6, 2018, https://doi.org/10.1177/0363546521998021
  8. Identifying Consensus and Open Questions around Assessing or Predicting the Quality and Success of Cartilage Repair: A Delphi Study vol.2, pp.3, 2021, https://doi.org/10.3390/surgeries2030029
  9. Deer antler extract potentially facilitates xiphoid cartilage growth and regeneration and prevents inflammatory susceptibility by regulating multiple functional genes vol.16, pp.1, 2021, https://doi.org/10.1186/s13018-021-02350-4
  10. Investigation of role of cartilage surface polymer brush border in lubrication of biological joints vol.10, pp.1, 2018, https://doi.org/10.1007/s40544-020-0468-y