Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials. 2011;32(34):8771-82. https://doi.org/10.1016/j.biomaterials.2011.08.073
- Ciullini Mannurita S, Vignoli M, Bianchi L, Kondi A, Gerloni V, Breda L, Ten Cate R, Alessio M, Ravelli A, Falcini F, et al. CACP syndrome: identification of five novel mutations and of the first case of UPD in the largest European cohort. Eur J Hum Genet. 2014;22(2):197-201. https://doi.org/10.1038/ejhg.2013.123
- Galle J, Bader A, Hepp P, Grill W, Fuchs B, Kas JA, Krinner A, MarquaB B, Muller K, Schiller J, et al. Mesenchymal Stem Cells in Cartilage Repair: State of the Art and Methods to monitor Cell Growth, Differentiation and Cartilage Regeneration. Curr Med Chem. 2010;17(21):2274-91. https://doi.org/10.2174/092986710791331095
- Bedi A, Feeley BT, Williams RJ 3rd. Management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;92(4):994-1009. https://doi.org/10.2106/JBJS.I.00895
- Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008; 60(2):243-62. https://doi.org/10.1016/j.addr.2007.08.027
- Bobick BE, Chen FH, Le AM, Tuan RS. Regulation of the chondrogenic phenotype in culture. Birth Defects Res C Embryo Today. 2009;87(4):351-71. https://doi.org/10.1002/bdrc.20167
- Becerra J, Andrades JA, Guerado E, Zamora-Navas P, Lopez-Puertas JM, Reddi AH. Articular cartilage: structure and regeneration. Tissue Eng Part B Rev. 2010;16(6):617-27. https://doi.org/10.1089/ten.teb.2010.0191
- Schinagl RM, Ting MK, Price JH, Sah RL. Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression. Ann Biomed Eng. 1996;24(4):500-12. https://doi.org/10.1007/BF02648112
- Wang CCB, Hung CT, Mow VC. An analysis of the effects of depthdependent aggregate modulus on articular cartilage stress-relaxation behavior in compression. J Biomech. 2001;34(1):75-84. https://doi.org/10.1016/S0021-9290(00)00137-8
- Elder BD, Athanasiou KA. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng Part B Rev. 2009;15(1):43-53. https://doi.org/10.1089/ten.teb.2008.0435
- Soltz MA, Ateshian GA. Interstitial Fluid Pressurization During Confined Compression Cyclical Loading of Articular Cartilage. Ann Biomed Eng. 2000; 28(2):150-9. https://doi.org/10.1114/1.239
- Krishnan R, Park S, Eckstein F, Ateshian GA. Inhomogeneous Cartilage Properties Enhance Superficial Interstitial Fluid Support and Frictional Properties, But Do Not Provide a Homogeneous State of Stress. J Biomech Eng. 2003;125(5):569. https://doi.org/10.1115/1.1610018
- Krishnan R, Kopacz M, Ateshian GA. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J Orthop Res. 2004; 22(3):565-70. https://doi.org/10.1016/j.orthres.2003.07.002
- Flannery CR, Hughes CE, Schumacher BL, Tudor D, Aydelotte MB, Kuettner KE, Caterson B. Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and Is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism. Biochem Biophys Res Commun. 1999;254(3):535-41. https://doi.org/10.1006/bbrc.1998.0104
- Ikegawa S, Sano M, Koshizuka Y, Nakamura Y. Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes. Cytogenetic and Genome Research. 2000;90(3-4):291-7. https://doi.org/10.1159/000056791
- Jay GD, Tantravahi U, Britt DE, Barrach HJ, Cha CJ. Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localized to chromosome 1q25. J Orthop Res. 2001;19(4):677-87. https://doi.org/10.1016/S0736-0266(00)00040-1
- Marcelino J, Carpten JD, Suwairi WM, Gutierrez OM, Schwartz S, Robbins C, Sood R, Makalowska I, Baxevanis A, Johnstone B, et al. CACP, encoding a secreted proteoglycan, is mutated in camptodactyly-arthropathy-coxa varapericarditis syndrome. Nat Genet. 1999;23(3):319-22. https://doi.org/10.1038/15496
- Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, Jay GD, Stewart M, Wang H, Warman ML, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Investig. 2005; 115(3):622-31. https://doi.org/10.1172/JCI200522263
- Swann DA, Slayter HS, Silver FH. The molecular structure of lubricating glycoprotein-I, the boundary lubricant for articular cartilage. J Biol Chem. 1981;256(11):5921-5.
- Radin EL, Swann DA, Weisser PA. Separation of a Hyaluronate-free Lubricating Fraction from Synovial Fluid. Nature. 1970;228(5269):377-8. https://doi.org/10.1038/228377a0
- Zappone B, Ruths M, Greene GW, Jay GD, Israelachvili JN. Adsorption, lubrication, and wear of lubricin on model surfaces: polymer brush-like behavior of a glycoprotein. Biophys J. 2007;92(5):1693-708. https://doi.org/10.1529/biophysj.106.088799
- Jay GD, Britt DE, Cha CJ. Lubricin is a product of megakaryocyte stimulating factor gene expression by human synovial fibroblasts. J Rheumatol. 2000; 27(3):594-600.
- Jay GD, Harris DA, Cha CJ. Boundary lubrication by lubricin is mediated by O-linked beta (1-3) Gal-GalNAc oligosaccharides. Glycoconj J. 2001;18(10):807-15. https://doi.org/10.1023/A:1021159619373
- Jay GD. Characterization of a bovine synovial fluid lubricating factor. I. Chemical, surface activity and lubricating properties. Connect Tissue Res. 1992;28(1-2):71-88. https://doi.org/10.3109/03008209209014228
- Schaefer DB, Wendt D, Moretti M, Jakob M, Jay GD, Heberer M, Martin I. Lubricin reduces cartilage-cartilage integration. Biorheology. 2004;41(3-4): 503-8.
- Klein J. Molecular mechanisms of synovial joint lubrication. Proceedings of the Institution of Mechanical Engineers, Part J Journal of Engineering Tribology. 2006;220(8):691-710. https://doi.org/10.1243/13506501JET143
- Chang DP, Abu-Lail NI, Guilak F, Jay GD, Zauscher S. Conformational mechanics, adsorption, and normal force interactions of lubricin and hyaluronic acid on model surfaces. Langmuir. 2008;24(4):1183-93. https://doi.org/10.1021/la702366t
- Van Klinken BJ, Dekker J, Buller HA, Einerhand AW. Mucin gene structure and expression: protection vs. adhesion. Am J Physiol Gastrointest Liver Physiol. 1995;269(5):G613-27. https://doi.org/10.1152/ajpgi.1995.269.5.G613
- Simmons PJ, Levesque J-P, Haylock DN. Mucin-like Molecules as Modulators of the Survival and Proliferation of Primitive Hematopoietic Cells. Ann N Y Acad Sci. 2006;938(1):196-207. https://doi.org/10.1111/j.1749-6632.2001.tb03590.x
- Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S, Kucherlapati R, Lipkin M, Yang K, Augenlicht L. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science. 2002;295(5560):1726-9. https://doi.org/10.1126/science.1069094
- Deng G, Curriden SA, Hu G, Czekay RP, Loskutoff DJ. Plasminogen activator inhibitor-1 regulates cell adhesion by binding to the somatomedin B domain of vitronectin. J Cell Physiol. 2001;189(1):23-33. https://doi.org/10.1002/jcp.1133
- Schvartz I, Seger D, Shaltiel S. Vitronectin. Int J Biochem Cell Biol. 1999;31(5):539-44. https://doi.org/10.1016/S1357-2725(99)00005-9
- Seiffert D. The Cell Adhesion Domain in Plasma Vitronectin Is Cryptic. J Biol Chem. 1997;272(21):13705-10. https://doi.org/10.1074/jbc.272.21.13705
- Waller KA, Zhang LX, Elsaid KA, Fleming BC, Warman ML, Jay GD. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc Natl Acad Sci U S A. 2013;110(15):5852-7. https://doi.org/10.1073/pnas.1219289110
- Chang DP, Abu-Lail NI, Coles JM, Guilak F, Jay GD, Zauscher S. Friction Force Microscopy of Lubricin and Hyaluronic Acid between Hydrophobic and Hydrophilic Surfaces. Soft Matter. 2009;5(18):3438-45. https://doi.org/10.1039/b907155e
- Jay GD, Torres JR, Warman ML, Laderer MC, Breuer KS. The role of lubricin in the mechanical behavior of synovial fluid. Proc Natl Acad Sci U S A. 2007; 104(15):6194-9. https://doi.org/10.1073/pnas.0608558104
- Young AA, McLennan S, Smith MM, Smith SM, Cake MA, Read RA, Melrose J, Sonnabend DH, Flannery CR, Little CB. Proteoglycan 4 downregulation in a sheep meniscectomy model of early osteoarthritis. Arthritis Res Ther. 2006;8(2):R41. https://doi.org/10.1186/ar1898
- Englert C, McGowan KB, Klein TJ, Giurea A, Schumacher BL, Sah RL. Inhibition of integrative cartilage repair by proteoglycan 4 in synovial fluid. Arthritis Rheum. 2005;52(4):1091-9. https://doi.org/10.1002/art.20986
- Zappone B, Greene GW, Oroudjev E, Jay GD, Israelachvili JN. Molecular aspects of boundary lubrication by human lubricin: effect of disulfide bonds and enzymatic digestion. Langmuir. 2008;24(4):1495-508. https://doi.org/10.1021/la702383n
- Bansil R, Stanley E, LaMont JT. Mucin biophysics. Annu Rev Physiol. 1995;57: 635-57. https://doi.org/10.1146/annurev.ph.57.030195.003223
- Raviv U, Giasson S, Kampf N, Gohy JF, Jerome R, Klein J. Lubrication by charged polymers. Nature. 2003;425(6954):163-5. https://doi.org/10.1038/nature01970
- Banquy X, Burdynska J, Lee DW, Matyjaszewski K, Israelachvili J. Bioinspired bottle-brush polymer exhibits low friction and Amontons-like behavior. J Am Chem Soc. 2014;136(17):6199-202. https://doi.org/10.1021/ja501770y
- Dedinaite A. Biomimetic lubrication. Soft Matter. 2012;8(2):273-84. https://doi.org/10.1039/C1SM06335A
- Yang J, Chen H, Xiao S, Shen M, Chen F, Fan P, Zhong M, Zheng J. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties. Langmuir. 2015;
- Liu X, Dedinaite A, Rutland M, Thormann E, Visnevskij C, Makuska R, Claesson PM. Electrostatically anchored branched brush layers. Langmuir. 2012;28(44):15537-47. https://doi.org/10.1021/la3028989
- Seekell RP 3rd, Dever R, Zhu Y. Control hydrogel-hyaluronic acid aggregation toward the design of biomimetic superlubricants. Biomacromolecules. 2014;15(7):2760-8. https://doi.org/10.1021/bm500620e
- Seror J, Merkher Y, Kampf N, Collinson L, Day AJ, Maroudas A, Klein J. Articular cartilage proteoglycans as boundary lubricants: structure and frictional interaction of surface-attached hyaluronan and hyaluronan-aggrecan complexes. Biomacromolecules. 2011;12(10):3432-43. https://doi.org/10.1021/bm2004912
- Das S, Banquy X, Zappone B, Greene GW, Jay GD, Israelachvili JN. Synergistic interactions between grafted hyaluronic acid and lubricin provide enhanced wear protection and lubrication. Biomacromolecules. 2013;14(5):1669-77. https://doi.org/10.1021/bm400327a
- Wang M, Liu C, Thormann E, Dedinaite A. Hyaluronan and phospholipid association in biolubrication. Biomacromolecules. 2013;14(12):4198-206. https://doi.org/10.1021/bm400947v
- Yu J, Banquy X, Greene GW, Lowrey DD, Israelachvili JN. The boundary lubrication of chemically grafted and cross-linked hyaluronic acid in phosphate buffered saline and lipid solutions measured by the surface forces apparatus. Langmuir. 2012;28(4):2244-50. https://doi.org/10.1021/la203851w
- Raviv U, Giasson S, Kampf N, Gohy JF, Jerome R, Klein J. Normal and frictional forces between surfaces bearing polyelectrolyte brushes. Langmuir. 2008;24(16):8678-87. https://doi.org/10.1021/la7039724
- Zhulina EB, Rubinstein M. Lubrication by Polyelectrolyte Brushes. Macromolecules. 2014;47(16):5825-38. https://doi.org/10.1021/ma500772a
- Chen M, Briscoe WH, Armes SP, Klein J. Lubrication at physiological pressures by polyzwitterionic brushes. Science. 2009;323(5922):1698-701. https://doi.org/10.1126/science.1169399
- Gourdon D, Lin Q, Oroudjev E, Hansma H, Golan Y, Arad S, Israelachvili J. Adhesion and stable low friction provided by a subnanometer-thick monolayer of a natural polysaccharide. Langmuir. 2008;24(4):1534-40. https://doi.org/10.1021/la702259c
- Lee S, Spencer ND. Materials science. Sweet, hairy, soft, and slippery. Science. 2008;319(5863):575-6. https://doi.org/10.1126/science.1153273
- Liu G, Liu Z, Li N, Wang X, Zhou F, Liu W. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment. ACS Appl Mater Interfaces. 2014; 6(22):20452-63. https://doi.org/10.1021/am506026e
- Liu G, Cai M, Zhou F, Liu W. Charged polymer brushes-grafted hollow silica nanoparticles as a novel promising material for simultaneous joint lubrication and treatment. J Phys Chem B. 2014;118(18):4920-31. https://doi.org/10.1021/jp500074g
- Tairy O, Kampf N, Driver MJ, Armes SP, Klein J. Dense, Highly Hydrated Polymer Brushes via Modified Atom-Transfer-Radical-Polymerization: Structure, Surface Interactions, and Frictional Dissipation. Macromolecules. 2015;48(1):140-51. https://doi.org/10.1021/ma5019439
- Lawrence A, Xu X, Bible MD, Calve S, Neu CP, Panitch A. Synthesis and characterization of a lubricin mimic (mLub) to reduce friction and adhesion on the articular cartilage surface. Biomaterials. 2015;73:42-50. https://doi.org/10.1016/j.biomaterials.2015.09.012
- Musumeci G, Loreto C, Carnazza ML, Coppolino F, Cardile V, Leonardi R. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold. Eur J Histochem. 2011;55(3):e31. https://doi.org/10.4081/ejh.2011.e31
- Andresen Eguiluz RC, Cook SG, Brown CN, Wu F, Pacifici NJ, Bonassar LJ, Gourdon D. Fibronectin mediates enhanced wear protection of lubricin during shear. Biomacromolecules. 2015;
- Yu Y, Brouillette MJ, Seol D, Zheng H, Buckwalter JA, Martin JA. Use of recombinant human stromal cell-derived factor 1alpha-loaded fibrin/hyaluronic acid hydrogel networks to achieve functional repair of fullthickness bovine articular cartilage via homing of chondrogenic progenitor cells. Arthritis Rheumatol. 2015;67(5):1274-85. https://doi.org/10.1002/art.39049
- Singh A, Corvelli M, Unterman SA, Wepasnick KA, McDonnell P, Elisseeff JH. Enhanced lubrication on tissue and biomaterial surfaces through peptidemediated binding of hyaluronic acid. Nat Mater. 2014;13(10):988-95. https://doi.org/10.1038/nmat4048
- Chen T, Hilton MJ, Brown EB, Zuscik MJ, Awad HA. Engineering superficial zone features in tissue engineered cartilage. Biotechnol Bioeng. 2013;110(5): 1476-86. https://doi.org/10.1002/bit.24799
- Kamiya T, Tanimoto K, Tanne Y, Lin YY, Kunimatsu R, Yoshioka M, Tanaka N, Tanaka E, Tanne K. Effects of mechanical stimuli on the synthesis of superficial zone protein in chondrocytes. J Biomed Mater Res A. 2010;92(2):801-5.
- Ogawa H, Kozhemyakina E, Hung HH, Grodzinsky AJ, Lassar AB. Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREBdependent, fluid flow shear stress-induced signaling pathways. Genes Dev. 2014;28(2):127-39. https://doi.org/10.1101/gad.231969.113
- Grad S, Lee CR, Gorna K, Gogolewski S, Wimmer MA, Alini M. Surface motion upregulates superficial zone protein and hyaluronan production in chondrocyteseeded three-dimensional scaffolds. Tissue Eng. 2005;11(1-2):249-56. https://doi.org/10.1089/ten.2005.11.249
- Grad S, Gogolewski S, Alini M, Wimmer MA. Effects of simple and complex motion patterns on gene expression of chondrocytes seeded in 3D scaffolds. Tissue Eng. 2006;12(11):3171-9. https://doi.org/10.1089/ten.2006.12.3171
- Wang N, Grad S, Stoddart MJ, Niemeyer P, Sudkamp NP, Pestka J, Alini M, Chen J, Salzmann GM. Bioreactor-Induced Chondrocyte Maturation Is Dependent on Cell Passage and Onset of Loading. Cartilage. 2013;4(2):165-76. https://doi.org/10.1177/1947603512471345
- Hilz FM, Ahrens P, Grad S, Stoddart MJ, Dahmani C, Wilken FL, Sauerschnig M, Niemeyer P, Zwingmann J, Burgkart R, et al. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering. Bioelectromagnetics. 2014;35(2):116-28. https://doi.org/10.1002/bem.21822
- Zhang L, Spector M. Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering. Biomed Mater. 2009;4(4):045012. https://doi.org/10.1088/1748-6041/4/4/045012
- Lohan A, Marzahn U, El Sayed K, Haisch A, Muller RD, Kohl B, Stolzel K, Ertel W, John T, Schulze-Tanzil G. Osteochondral articular defect repair using auricle-derived autologous chondrocytes in a rabbit model. Ann Anat. 2014;196(5):317-26. https://doi.org/10.1016/j.aanat.2014.03.002
- Klein TJ, Schumacher BL, Blewis ME, Schmidt TA, Voegtline MS, Thonar EJ, Masuda K, Sah RL. Tailoring secretion of proteoglycan 4 (PRG4) in tissue-engineered cartilage. Tissue Eng. 2006;12(6):1429-39. https://doi.org/10.1089/ten.2006.12.1429
- Coates EE, Riggin CN, Fisher JP. Matrix molecule influence on chondrocyte phenotype and proteoglycan 4 expression by alginate-embedded zonal chondrocytes and mesenchymal stem cells. J Orthop Res. 2012;30(12):1886-97. https://doi.org/10.1002/jor.22166
- Grogan SP, Chen X, Sovani S, Taniguchi N, Colwell CW Jr, Lotz MK, D'Lima DD. Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation. Tissue Eng Part A. 2014;20(1-2):264-74. https://doi.org/10.1089/ten.tea.2012.0618
- Steele JA, McCullen SD, Callanan A, Autefage H, Accardi MA, Dini D, Stevens MM. Combinatorial scaffold morphologies for zonal articular cartilage engineering. Acta Biomater. 2014;10(5):2065-75. https://doi.org/10.1016/j.actbio.2013.12.030
- Wei Q, Pei X, Hao J, Cai M, Zhou F, Liu W. Surface Modification of Diamond-Like Carbon Film with Polymer Brushes Using a Bio-Inspired Catechol Anchor for Excellent Biological Lubrication. Adv Mater Interfaces. 2014;1(5):n/a.
- Schmidt TA, Gastelum NS, Han EH, Nugent-Derfus GE, Schumacher BL, Sah RL. Differential regulation of proteoglycan 4 metabolism in cartilage by IL-1alpha, IGF-I, and TGF-beta1. Osteoarthr Cartil. 2008;16(1):90-7. https://doi.org/10.1016/j.joca.2007.05.009
-
Cheng J, Wang Y, Wang Z, Yang M, Wu Y. Differential Regulation of Proteoglycan-4 Expression by IL-
$1{\alpha}$ and TGF-${\beta}1$ in Rat Condylar Chondrocytes. Tohoku J Exp Med. 2010;222(3):211-8. https://doi.org/10.1620/tjem.222.211 - Lee SY, Niikura T, Reddi AH. Superficial zone protein (lubricin) in the different tissue compartments of the knee joint: modulation by transforming growth factor beta 1 and interleukin-1 beta. Tissue Eng Part A. 2008;14(11):1799-808. https://doi.org/10.1089/ten.tea.2007.0367
- McNary SM, Athanasiou KA, Reddi AH. Transforming growth factor beta-induced superficial zone protein accumulation in the surface zone of articular cartilage is dependent on the cytoskeleton. Tissue Eng Part A. 2014;20(5-6):921-9. https://doi.org/10.1089/ten.tea.2013.0043
- Niikura T, Reddi AH. Differential regulation of lubricin/superficial zone protein by transforming growth factor beta/bone morphogenetic protein superfamily members in articular chondrocytes and synoviocytes. Arthritis Rheum. 2007;56(7):2312-21. https://doi.org/10.1002/art.22659
- Khalafi A, Schmid TM, Neu C, Reddi AH. Increased accumulation of superficial zone protein (SZP) in articular cartilage in response to bone morphogenetic protein-7 and growth factors. J Orthop Res. 2007;25(3):293-303. https://doi.org/10.1002/jor.20329
- Liu C, Ma X, Li T, Zhang Q. Kartogenin, transforming growth factor-beta1 and bone morphogenetic protein-7 coordinately enhance lubricin accumulation in bone-derived mesenchymal stem cells. Cell Biol Int. 2015; 39(9):1026-35. https://doi.org/10.1002/cbin.10476
- Musumeci G, Mobasheri A, Trovato FM, Szychlinska MA, Graziano AC, Lo Furno D, Avola R, Mangano S, Giuffrida R, Cardile V. Biosynthesis of collagen I, II, RUNX2 and lubricin at different time points of chondrogenic differentiation in a 3D in vitro model of human mesenchymal stem cells derived from adipose tissue. Acta Histochem. 2014;116(8):1407-17. https://doi.org/10.1016/j.acthis.2014.09.008
- Nakagawa Y, Muneta T, Otabe K, Ozeki N, Mizuno M, Udo M, Saito R, Yanagisawa K, Ichinose S, Koga H, et al. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo. PLoS One. 2016;11(2):e0148777. https://doi.org/10.1371/journal.pone.0148777
- Cuellar A, Reddi AH. Stimulation of Superficial Zone Protein/Lubricin/PRG4 by Transforming Growth Factor-beta in Superficial Zone Articular Chondrocytes and Modulation by Glycosaminoglycans. Tissue Eng Part A. 2015;21(13-14):1973-81. https://doi.org/10.1089/ten.tea.2014.0381
- Jones AR, Flannery CR. Bioregulation of lubricin expression by growth factors and cytokines. Eur Cell Mater. 2007;13:40-5. discussion 45 https://doi.org/10.22203/eCM.v013a04
- Sakata R, McNary SM, Miyatake K, Lee CA, Van den Bogaerde JM, Marder RA, Reddi AH. Stimulation of the superficial zone protein and lubrication in the articular cartilage by human platelet-rich plasma. Am J Sports Med. 2015; 43(6):1467-73. https://doi.org/10.1177/0363546515575023
Cited by
- Repair of Damaged Articular Cartilage: Current Approaches and Future Directions vol.19, pp.8, 2018, https://doi.org/10.3390/ijms19082366
- Proteoglycan 4: From Mere Lubricant to Regulator of Tissue Homeostasis and Inflammation vol.41, pp.1, 2018, https://doi.org/10.1002/bies.201800166
- A Retrospective Analysis of the Cartilage Kunitz Protease Inhibitory Proteins Identifies These as Members of the Inter-α-Trypsin Inhibitor Superfamily with Potential Roles in the Protection of t vol.20, pp.3, 2018, https://doi.org/10.3390/ijms20030497
- Engineering of Molecular Geometry in Bottlebrush Polymers vol.52, pp.13, 2018, https://doi.org/10.1021/acs.macromol.9b00845
- Mechanisms of synovial joint and articular cartilage development vol.76, pp.20, 2018, https://doi.org/10.1007/s00018-019-03191-5
- Synthetic periprosthetic synovial fluid development for in vitro cell‐tribocorrosion testing using the Taguchi array approach vol.109, pp.4, 2018, https://doi.org/10.1002/jbm.a.37039
- Injectable Fibrin/Polyethylene Oxide Semi-IPN Hydrogel for a Segmental Meniscal Defect Regeneration vol.49, pp.6, 2018, https://doi.org/10.1177/0363546521998021
- Identifying Consensus and Open Questions around Assessing or Predicting the Quality and Success of Cartilage Repair: A Delphi Study vol.2, pp.3, 2021, https://doi.org/10.3390/surgeries2030029
- Deer antler extract potentially facilitates xiphoid cartilage growth and regeneration and prevents inflammatory susceptibility by regulating multiple functional genes vol.16, pp.1, 2021, https://doi.org/10.1186/s13018-021-02350-4
- Investigation of role of cartilage surface polymer brush border in lubrication of biological joints vol.10, pp.1, 2018, https://doi.org/10.1007/s40544-020-0468-y