DOI QR코드

DOI QR Code

Implementation of a backend system for real-time intravascular ultrasound imaging

실시간 혈관내초음파 영상을 위한 후단부 시스템 구현

  • 박준원 (서강대학교 전자공학과) ;
  • 문주영 (서강대학교 바이오융합기술연구소) ;
  • 이준수 (서강대학교 전자공학과) ;
  • 장진호 (서강대학교 전자공학과)
  • Received : 2018.04.12
  • Accepted : 2018.07.19
  • Published : 2018.07.31

Abstract

This paper reports the development and performance evaluation of a backend system for real-time IVUS (Intravascular Ultrasound) imaging. The developed backend system was designed to minimize the amount of logic and memory usage by means of efficient LUTs (Look-up Tables), and it was implemented in a single FPGA (Field Programmable Gate Array) without using external memory. This makes it possible to implement the backend system that is less expensive, smaller, and lighter. The accuracy of the backend system implemented was evaluated by comparing the output of the FPGA with the result computed using a MATLAB program implemented in the same way as the VHDL (VHSIC Hardware Description Language) code. Based on the result of ex-vivo experiment using rabbit artery, the developed backend system was found to be suitable for real-time intravascular ultrasound imaging.

본 논문은 실시간 혈관내초음파 영상을 위한 후단부 시스템 개발과 성능 평가 결과에 관한 것이다. 개발한 후단부 시스템은 로직 사용량과 메모리 사용량을 최소화할 수 있는 효율적인 LUTs (Look-up Tables)을 사용하여 외부 메모리 없이 하나의 FPGA (Field Programmable Gate Array)만으로 시스템을 구성함으로써 시스템의 저비용, 소형화, 경량화가 가능하도록 설계하였다. 구현한 후단부 시스템의 정확도는 FPGA의 출력값과 VHDL (VHSIC Hardware Description Language) 코드를 MATLAB 프로그램을 사용하여 동일하게 구현하여 얻은 결과를 비교함으로써 검증하였다. 토끼 동맥을 이용한 ex-vivo 실험을 통하여 개발한 후단부 시스템이 실시간 혈관내초음파 영상에 적합함을 확인하였다.

Keywords

References

  1. H. H. Kim, J. Choi, M. K. Oh, E. Y. Kim, J. R. Ghim, S. J. Choi, and J. G. Shin, "Retrospective analysis of adverse reactions to iodinated contrast media in Korean," J. Korean Soc. Clin. Pharmacol Ther., 20, 165-174 (2012). https://doi.org/10.12793/jkscpt.2012.20.2.165
  2. Y.-H. Kim, M.-K. Hong, J.-W. Kim, S.-K. Lee, C. W. Lee, S.-S. Cheong, K.-J. Choi, D.-H. Kang, J.-K. Song, J.-J. Lim, S.-W. Park, and S.-J. Park, "Comparison between intravascular ultrasound and quantitative coronary angiographic measurements in coronary artery stenting," Korean Circulation Journal, 27, 1265-1271 (1997). https://doi.org/10.4070/kcj.1997.27.12.1265
  3. D. Vancraeynest, A. Pasquet, V. Roelants, B. L. Gerber, and J.-L. J. Vanoverschelde, "Imaging the vulnerable plaque," J. American College of Cardiology, 57, 1961-1979 (2011). https://doi.org/10.1016/j.jacc.2011.02.018
  4. H. M. Garcia-Garcia, M. A. Costa, and P. W. Serruys, "Imaging of coronary atherosclerosis: intravascular ultrasound," European Heart Journal, 31, 2459-2469 (2010).
  5. M. J. Post, C. Borst, and R. E. Kuntz, "The relative importance of arterial remodeling compared with intimal hyperplasia in lumen renarrowing after ballon angioplasty," Circulation, 89, 2816-2821 (1994). https://doi.org/10.1161/01.CIR.89.6.2816
  6. A. Colombo, P. Hall, S. Nakamura, Y. Almagor, L. Maiello, G. Martini, A. Gaglione, S. L. Goldberg, and J. M. Tobis, "Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance," Circulation, 91, 1676-1688 (1995). https://doi.org/10.1161/01.CIR.91.6.1676
  7. W. Qiu, Y. Chen, X. Li, Y. Yu, W. F. Cheng, F. K. Tsang, Q. Zhou, K. K. Shung, J. Dai, and L. Sun, "An open system for intravascular ultrasound imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Control, 59, 2201-2209 (2012).
  8. A. A. Assef, B. M. Ferreira, J. M. Maia, and E. T. Costa, "Modeling and FPGA-based implementation of an efficient and simple envelope detector using a Hilbert Transform FIR filter for ultrasound imaging applications," Res. Biomed. Eng. 34, 87-92 (2018). https://doi.org/10.1590/2446-4740.02417
  9. J. Kim, H. Kim, J.-Y. Moon, J. Lee, and J. H. Chang, "Image quality enhancement of intravascular ultrasound imaging using a complementary time-gain compensation," (in Korean), J. Acoust. Soc. Kr. Suppl.2(s), 33, 288-291 (2014).
  10. J. H. Chang, J. T. Yen, and K. K. Shung, "High-speed digital scan converter for high-frequency ultrasound sector scanners," Ultrasonics, 48, 444-452 (2008). https://doi.org/10.1016/j.ultras.2008.03.001
  11. J. H. Chang, L. Sun, J. T. Yen, and K. K. Shung, "Low-Cost, high-speed back-end processing system for high-frequency ultrasound b-mode imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Control, 56, 1490-1497 (2009). https://doi.org/10.1109/TUFFC.2009.1205
  12. L. Lee, J. Jang, and J. H. Chang, "Oblong-shaped-focused transducers for intravascular ultrasound imaging," IEEE Trans. Biomed. Eng., 64, 671-680 (2017).