References
- Office of Energy Efficiency & Renewable Energy, https://www.energy.gov/eere/fuelcells/ (accessed 6. 5, 2018)
- DOE report: Progress in Hydrogen and Fuel Cells, DOE/EE-1647 (2017).
- H. Cavendish, Philosophical Trans. 56, 141 (1766). https://doi.org/10.1098/rstl.1766.0019
- J. Verne, L'Ile Mysterieuse (Pierre-Jules Hetzel, France, 1874)
- A. Kudo, Pure Appl. Chem. 79, 1917 (2007). https://doi.org/10.1351/pac200779111917
- N. S. Lewis, and D. G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 103, 15729 (2006). https://doi.org/10.1073/pnas.0603395103
- M. Pagliaro, and A. G. Konstandopoulos, Solar Hydrogen: Fuel of the Future (Royal society of chemistry, Cambridge, 2012).
- J. Jia, L. C. Seitz, J. D. Benck, Y. Huo, Y. Chen, J. W. D. Ng, T. Bilir, J. S. Harris, and T. F. Jaramillo, Nature Com. 7,13237 (2016). https://doi.org/10.1038/ncomms13237
- J. F. Zhu and M. Zach, Curr Opin Colloid Interface Sci. 14, 260 (2009). https://doi.org/10.1016/j.cocis.2009.05.003
- B. D. Alexander, P.J. Kulesza, I. Rutkowska, R. Solarska, and J. Augustynski J. Mater. Chem, 18 2298 (2008). https://doi.org/10.1039/b718644d
- Z. Shi, X. Wen, Z. Guan, D. Gao, W. Luo, and Z. Zou, Ann. Phys. 358, 236 (2015). https://doi.org/10.1016/j.aop.2015.04.005
- M. Sarnowska, K. Bienkowski, P.J. Barczuk, R. Solarska, and J. Augustynski, Adv. Energy Mater. 6, 1600526 (2016). https://doi.org/10.1002/aenm.201600526
- J. Y. Zheng, S. I. Son, T. K. Van, and Y. S. Kang, RSC Adv. 5, 36307 (2015). https://doi.org/10.1039/C5RA03029C
- L. Wu, L. -K. Tsui, N. Swami, and G. Zangari, J. Phys. Chem. C. 114, 11551 (2010) https://doi.org/10.1021/jp103437y
- L. Yang, W. Wang, H. Zhang, S. Wang, M. Zhang, G. He, J. Lv, K. Zhu, and Z. Sun, Sol. Energy. Mater. Sol. Cells 165, 17 (2017) https://doi.org/10.1016/j.solmat.2016.12.012
- G. Li, N. M. Dimitrijevic, L. Chen, T. Rajh, and K. A. Gray, J. Phys. Chem. C 112, 19040 (2008). https://doi.org/10.1021/jp8068392
- A. Fujishima, and K. Honda, Nature 238, 37 (1972). https://doi.org/10.1038/238037a0
- E. P. Melian, O. G. Diaz, A. O. Mendez, C. R. Lopez, M. N. Suarez, J. M. D. Rodriguez, J. A. Navio, D. F. Hevia, and J. P. Pena, Int J. Hydrogen Energy 38, 2144 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.005
- N. L. Wu, and M. S. Lee, Int J. Hydrogen Energy 29, 1601 (2004). https://doi.org/10.1016/j.ijhydene.2004.02.013
- H. W. Park, Y. S. Park, W. Y. Kim, and W. Y. Choi, J. Photochem. Photobiol. C 15, 1 (2013). https://doi.org/10.1016/j.jphotochemrev.2012.10.001
- N. R. Khalid, E. Ahmed, Z. Hong, Y. Zhang, M. Ullah, and M. Ahmed, Ceram. Int. 39 3569 (2013). https://doi.org/10.1016/j.ceramint.2012.10.183
- S. U. M. Khan, M. Al-Shahry, and W. B. Ingler Jr., Science 297, 2243 (2002). https://doi.org/10.1126/science.1075035
- R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001). https://doi.org/10.1126/science.1061051
- T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, Appl. Phys. Lett. 81, 454. (2002). https://doi.org/10.1063/1.1493647
- R. Asahi, T. Morikawa, H. Irie, and T. Ohwaki, Chem. Rev. 114, 9824 (2014) https://doi.org/10.1021/cr5000738
- X. Lv, L. Tao, M. Cao, X. Xiao, M. Wang, and Y. Shen, Nano Energy 44, 411 (2018). https://doi.org/10.1016/j.nanoen.2017.12.024
- K. Zhang, W. Zhou, L. Chi, X. Zhang, W. Hu, B. Jiang, K. Pan, G. Tian, and Z. Jiang, Chem. Sus. Chem. 9, 2841 (2016) https://doi.org/10.1002/cssc.201600854
- S. Patnaik, S. Martha, and K. M. Parida, RSC Adv. 6, 46929 (2016). https://doi.org/10.1039/C5RA26702A
- Y. Ito, W. Cong, T. Fujita, Z. Tang, and M. Chen, Angew. Chem. Int. Ed. Engl. 54, 2131 (2015). https://doi.org/10.1002/anie.201410050
- X. Gong, S. Liu, C. Ouyang, P. Strasser, and R. Yang, ACS Catal. 5, 920 (2015). https://doi.org/10.1021/cs501632y
- S. Pei, and H. M Cheng, Carbon 50, 3210 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
- T. F. Yeh, J. M. Syu, C. Cheng, T. H. Chang, and H. S. Teng, Adv. Funct. Mater. 20, 2255 (2010). https://doi.org/10.1002/adfm.201000274
- J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, Science 334, 1383 (2011). https://doi.org/10.1126/science.1212858
- H. Fujito, H. Kunioku, D. Kato, H. Suzuki, M. Higashi, H. Kageyama, and R. Abe, J. Am. Chem. Soc. 138, 2082 (2016). https://doi.org/10.1021/jacs.5b11191
- J. G. Lee, J. M. Hwang, H. J. Hwang, O. S. Jeon, J. S. Jang, O. C. Kwon, Y. Y. Lee, B. C. Han, and Y. G. Shul, J. Am. Chem. Soc. 138, 3541 (2016). https://doi.org/10.1021/jacs.6b00036
- J. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan, and M. Graetzel, Science 345,1593 (2014). https://doi.org/10.1126/science.1258307
- A. Vilanova, T. Lopes, C. Spenke, M. Wullenkord, and A. Mendes, Energy Storage Mater. 13, 175 (2018) https://doi.org/10.1016/j.ensm.2017.12.017
- J. Su, L. Guo, N. Bao, and C. A. Grimes, Nano Lett. 11, 1928 (2011). https://doi.org/10.1021/nl2000743
- Y. Li, T. Takata, D. K. Cha, K. Takanabe, T. Minegishi, J. Kubota, and K. Domen, Adv. Mater. 25, 125(2013). https://doi.org/10.1002/adma.201202582
- J. Luo, L. Steier, M.-K. Son, M. Schreier, M. T. Mayer, and M. Gratzel, Nano Lett. 16, 1848 (2016). https://doi.org/10.1021/acs.nanolett.5b04929
- J. Liu, M. Dai, J. Wu, Y. Hu, Q. Zhang, J. Cui, Y. Wang, H. H. Tan, and Y. Wu, Science Bulletin 63, 194 (2018). https://doi.org/10.1016/j.scib.2017.12.023
- C. Hao, W. Wang, R. Zhang, B, Zou, and H. Shi, Sol. Energy Mater. Sol. Cells 174, 132 (2018). https://doi.org/10.1016/j.solmat.2017.08.033
- F. Cao, W. Tian, and L. Li, J. Mater. Sci. Tech 34, 899 (2018). https://doi.org/10.1016/j.jmst.2017.11.054
- F. Xu, J. Mei, M. Zheng, D. Bai, D. Wu, Z. Cao, and K. Jiang, J. Alloy Comp 693, 1124 (2017). https://doi.org/10.1016/j.jallcom.2016.09.273