DOI QR코드

DOI QR Code

Synthesis and Characterization of Water Soluble Fluorescent Copper Nanoparticles

  • Yu, Ji Soo (Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Kim, Sung Hun (Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Man, Minh Tan (Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University) ;
  • Lee, Hong Seok (Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University)
  • Published : 2018.07.31

Abstract

The electrostatic interaction between emerging quantum-confined nanostructures with plasmonic structures is crucial for future biological applications. Water-soluble green fluorescent copper nanoparticles (Cu-NPs) were fabricated. We demonstrate that L-ascorbic acid is considered as a key to precisely control small Cu-NPs and the capability of the surface ligands, while cetyltrimethylammonium bromide is used as a stabilizing agent controls the particle growth, and stabilizes the nanoparticles. Water-soluble green fluorescent Cu-NPs are tunable through modification of the reaction periods.

Keywords

References

  1. L. Zhang and E. Wang, Nano Today 9, 132 (2014). https://doi.org/10.1016/j.nantod.2014.02.010
  2. I. Diez and R. H. A. Ras, Nanoscale 3, 1963 (2011). https://doi.org/10.1039/c1nr00006c
  3. S. Choi, R. M. Dickson, and J. Yu, Chem. Soc. Rev. 41, 1867 (2012). https://doi.org/10.1039/C1CS15226B
  4. Y. Z. Lu, W. T. Wei, and W. Chen, Chin. Sci. Bull. 57, 41 (2012). https://doi.org/10.1007/s11434-011-4896-y
  5. Y. Z. Lu and W. Chen, Chem. Soc. Rev. 41, 3594 (2012). https://doi.org/10.1039/c2cs15325d
  6. G. Vitulli, M. Bernini, S. Bertozzi, E. Pitzalis, P. Salvadori, S. Coluccia, and G. Martra, Chem. Mater. 14, 1183 (2002). https://doi.org/10.1021/cm011199x
  7. G. R. Dey, Radiat. Phys. Chem. 74, 172 (2005). https://doi.org/10.1016/j.radphyschem.2005.04.012
  8. T. Y. Chen, S. F. Chen, H. S. Sheu, and C. S. Yeh, J. Phys. Chem. B 106, 9717 (2002). https://doi.org/10.1021/jp0205822
  9. J. Tanori and M. P. Pileni, Langmuir 13, 639 (1997). https://doi.org/10.1021/la9606097
  10. L. M. Qi, J. M. Ma, and J. L. Shen, J. Colloid Interface Sci. 186, 498 (1997). https://doi.org/10.1006/jcis.1996.4647
  11. N. A. Dhas, C. P. Raj, and A. Gedanken, Chem. Mater. 10, 1446 (1998). https://doi.org/10.1021/cm9708269
  12. R. V. Kumar, Y. Mastai, Y. Diamant, and A. Gedanken, J. Mater. Chem. 11, 1209 (2001). https://doi.org/10.1039/b005769j
  13. M. Salavati-Niasari, F. Davar, and N. Mir, Polyhedron 27, 3514 (2008). https://doi.org/10.1016/j.poly.2008.08.020
  14. S. Chen and J. M. Sommers, J. Phys. Chem. B 105, 8816 (2001). https://doi.org/10.1021/jp011280n
  15. J. Zheng, C. Zhang, and R. M. Dickson, Phys. Rev. Lett. 93, 077402 (2004). https://doi.org/10.1103/PhysRevLett.93.077402
  16. M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin, J. Am. Chem. Soc. 130, 5883 (2008). https://doi.org/10.1021/ja801173r
  17. R. Jin, Nanoscale 2, 343 (2010). https://doi.org/10.1039/B9NR00160C