Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Bobet, A. (2000), "The initiation of secondary cracks in compression", Eng. Fract. Mech., 66(2), 187-219. https://doi.org/10.1016/S0013-7944(00)00009-6
- Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9
- Cao, P., Liu, T., Pu, C. and Lin, H. (2015), "Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression", Eng. Geol., 187, 113-121. https://doi.org/10.1016/j.enggeo.2014.12.010
- Chen, G., Kemeny J.M. and Harpalani, S. (1995), "Fracture propagation and coalescence in marble plates with pre-cut notches under compression", Proceedings of the Symposium on Fractured and Jointed Rock Mass, Lake Tahoe, California, U.S.A.
- Cheng, Y., Wong, L.N.Y. and Zou, C. (2015), "Experimental study on the formation of faults from en-echelon fractures in Carrara marble", Eng. Geol., 195, 312-326. https://doi.org/10.1016/j.enggeo.2015.06.004
- Ercolessi, F. (1997), A Molecular Dynamics Primer, in Spring College in Computational Physics, ICTP, Trieste, Italy, 24-25.
- Feng, X.T., Ding, W. and Zhang, D. (2009), "Multi-crack interaction in limestone subject to stress and flaw of chemical solutions", J. Rock Mech. Min. Sci., 46(1), 159-171. https://doi.org/10.1016/j.ijrmms.2008.08.001
- Ha, Y.D. and Bobaru, F. (2011), "Characteristics of dynamic brittle fracture captured with peridynamics", Eng. Fract. Mech., 78(6), 1156-1168. https://doi.org/10.1016/j.engfracmech.2010.11.020
- Ha, Y.D., Lee, J. and Hong, J.W. (2015), "Fracturing patterns of rock-like materials in compression captured with peridynamics", Eng. Fract. Mech., 144, 176-193. https://doi.org/10.1016/j.engfracmech.2015.06.064
- Haeri, H., Sarfarazi, V. and Zhu, Z. (2017), "Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC)", Geomech. Eng., 19(1), 99-110.
- Huang, J.F., Chen, G.L., Zhao, Y.H. and Wang, R. (1990), "An experimental study of the strain field development prior to failure of a marble plate under compression", Tectonophys., 175(1-3), 283-290.
- Ko, T.Y., Einstein, H.H. and Kemeny, J. (2006), "Crack coalescence in brittle material under cyclic loading", Proceedings of the Golden Rocks 2006, The 41st US Symposium on Rock Mechanics (USRMS), Golden, Colorado, U.S.A., June.
- Lajtai, E.Z. (1974), "Brittle fracture in compression", J. Fract., 10(4), 525-536. https://doi.org/10.1007/BF00155255
- Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", J. Solid. Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001
- Lee, J. and Hong, J.W. (2016b), "Dynamic crack branching and curving in brittle polymers", J. Solid. Struct., 100, 332-340.
- Lee, J., Ha, Y.D. and Hong, J.W. (2017b), "Crack coalescence morphology in rock-like material under compression", J. Fract., 203(1-2), 211-236. https://doi.org/10.1007/s10704-016-0138-2
- Lee, J., Hong, J.W. and Jung, J.W. (2017c), "The mechanism of fracture coalescence in pre-cracked rock-type material with three flaws", Eng. Geol., 223, 31-47. https://doi.org/10.1016/j.enggeo.2017.04.014
- Lee, J., Liu, W. and Hong, J.W. (2016a), "Impact fracture enhanced by contact of peridynamic and finite element formulations", J. Impact Eng., 87, 108-119. https://doi.org/10.1016/j.ijimpeng.2015.06.012
- Lee, J., Oh, S.E. and Hong, J.W. (2017a), "Parallel programming of a peridynamics code coupled with finite element method", J. Fract., 203(1-2), 99-114. https://doi.org/10.1007/s10704-016-0121-y
- Li, H. and Wong, L.N.Y. (2012), "Influence of flaw inclination angle and loading condition on crack initiation and propagation", J. Solid. Struct., 49(18), 2482-2499. https://doi.org/10.1016/j.ijsolstr.2012.05.012
- Li, H.Q. and Wong, L.N.Y. (2014), "Numerical study on coalescence of pre-existing flaw pairs in rock-like material", Rock Mech. Rock Eng., 47(6), 2087-2105. https://doi.org/10.1007/s00603-013-0504-6
- Liu, W. and Hong, J.W. (2012a), "Discretized peridynamics for linear elastic solids", Comput. Mech., 50(5), 579-590. https://doi.org/10.1007/s00466-012-0690-1
- Liu, W. and Hong, J.W. (2012b), "Discretized peridynamics for brittle and ductile solids", J. Numer. Mech. Eng., 89(8), 1028-1046. https://doi.org/10.1002/nme.3278
- Liu, W. and Hong, J.W. (2012c), "A coupling approach of discretized peridynamics with finite element method", Comput. Meth. Appl. Mech., 245, 163-175.
- Manouchehrian, A. and Marji, M.F. (2012), "Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression", Acta Mech. Sinica, 28(5), 1389-1397. https://doi.org/10.1007/s10409-012-0145-0
- Manouchehrian, A., Sharifzadeh, M., Marji, M.F. and Gholamnejad, J. (2014), "A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression", Arch. Civ. Mech. Eng., 14(1), 40-52. https://doi.org/10.1016/j.acme.2013.05.008
- Mughieda, O. and Alzo'ubi, A.K. (2004), "Fracture mechanics of offset rock joints: a laboratory investigation", Geotech. Geol. Eng., 22(4), 545-562. https://doi.org/10.1023/B:GEGE.0000047045.89857.06
- Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: A comparison", J. Rock Mech. Min. Sci., 46(5), 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006
- Park, C.H. and Bobet, A. (2010), "Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77(14), 2727-2748. https://doi.org/10.1016/j.engfracmech.2010.06.027
- Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8
- Sarfarazi, V. and Haeri, H. (2016), "A review of experimental and numerical investigations about crack propagation", Geomech. Eng., 18(2), 235-266.
- Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. (1995), "Coalescence of fractures under shear stress experiments", J. Geophys. Res., 100(6), 5975-5990. https://doi.org/10.1029/95JB00040
- Silling, S.A. (2000), "Reformulation of elasticity theory for discontinuities and long-range forces", J. Mech. Phys. Solids, 48(1), 175-209. https://doi.org/10.1016/S0022-5096(99)00029-0
- Silling, S.A. and Askari, E. (2005), "A meshfree method based on the peridynamic model of solid mechanics", Comput. Struct., 83(17-18), 1526-1535. https://doi.org/10.1016/j.compstruc.2004.11.026
- Tang, C.A. and Kou, S.Q. (1998), "Crack propagation and coalescence in brittle materials under compression", Eng. Fract. Mech., 61(3-4), 311-324. https://doi.org/10.1016/S0013-7944(98)00067-8
- Tang, C.A., Lin, P., Wong, R.H.C. and Chau, K.T. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-Part II: Numerical approach", J. Rock Mech. Min. Sci., 38(7), 925-939. https://doi.org/10.1016/S1365-1609(01)00065-X
- Tian, W.L. and Yang, S.Q. (2017), "Experimental and numerical study on the fracture coalescence behavior of rock-like materials containing two non-coplanar filld fissures under uniaxial compression", Geomech. Eng., 12(3), 541-560. https://doi.org/10.12989/gae.2017.12.3.541
- Wong, L.N.Y. (2008), "Crack coalescence in molded gypsum and Carrara marble", Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.
- Wong, L.N.Y. and Einstein, H.H. (2009a), "Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression", J. Rock Mech. Min. Sci., 46(2), 239-249. https://doi.org/10.1016/j.ijrmms.2008.03.006
- Wong, L.N.Y. and Einstein, H.H. (2009b), "Crack coalescence in molded gypsum and Carrara marble: Part 1. Macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4
- Wong, R.H.C., Chau, K.T., Tang, C.A. and Lin, P. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-Part I: Experimental approach", J. Rock Mech. Min. Sci., 38(7), 909-924. https://doi.org/10.1016/S1365-1609(01)00064-8
- Wong, R.H.C., Guo, Y.S.H., Li, L.Y., Chau, K.T., Zhu, W.S. and Li, S.C. (2006), "Anti-wing crack growth from surface flaw in real rock under uniaxial compression", Proceedings of the 16th European Conference of Fracture (EFC16), Alexandroupolis, Greece, July.
- Wong, R.H.C., Tang, C.A., Chau, K.T. and Lin, P. (2002), "Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression", Eng. Fract. Mech., 69(17), 1853-1871. https://doi.org/10.1016/S0013-7944(02)00065-6
- Wu, Z. and Wong, L.N.Y. (2014), "Investigating the effects of micro-defects on the dynamic properties of rock using numerical manifold method", Constr. Build. Mater., 72, 72-82. https://doi.org/10.1016/j.conbuildmat.2014.08.082
- Yang, S.Q., Yang, D.S., Jing, H.W., Li, Y.H. and Wang, S.Y. (2012), "An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures", Rock Mech. Rock Eng., 45(4), 563-582. https://doi.org/10.1007/s00603-011-0206-x
- Yin, P., Wong R.H.C. and Chau, K.T. (2014), "Coalescence of two parallel pre-existing surface cracks in granite", J. Rock Mech. Min. Sci., 68, 66-88. https://doi.org/10.1016/j.ijrmms.2014.02.011
- Zhang, X.P. and Wong, L.N.Y. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: A numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46(5), 1001-1021. https://doi.org/10.1007/s00603-012-0323-1
- Zhou, X.P., Bi, J. and Qian, H. (2015), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws", Rock Mech. Rock Eng., 48(3), 1097-1114. https://doi.org/10.1007/s00603-014-0627-4
- Zhou, X.P., Cheng, H. and Feng, Y.F. (2014), "An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression", Rock Mech. Rock Eng., 47(6), 1961-1986. https://doi.org/10.1007/s00603-013-0511-7
Cited by
- Optimal design of shape of a working in cracked rock mass vol.24, pp.3, 2021, https://doi.org/10.12989/gae.2021.24.3.227
- Hydro-mechanical coupling behaviors in the failure process of pre-cracked sandstone vol.24, pp.6, 2021, https://doi.org/10.12989/gae.2021.24.6.573